Pexan Mixquming rivaduction Fom firnaculture

Proceedings of a Conference held at the University of Wisconsini © December 12, 1977

ront coryonty

$$
\text { wiscu-w-77-001 c } \alpha
$$

Perch Fingerifing Production for Aquaculture

Proceedings of a Conference held at the

 University of WisconsinDecember 12, 1977

CIRCULATME COPY Sea Grant Depository

Edited by

Richard W. Soderberg
University of Wisconsin-Extension
Sea Grant Advisory Services

LOAN COPY ONLY

Price: $\$ 2.50$

```
For more copies contact:
Sea Grant Comunications Office
Univeraity of Wisconsin
1800 University Avenue
Madison, WI 53706
Phone: 608/263-3259
```

The University of Wisconsin Sea Grant College Program is sponsored by the National Oceanic and Atmospheric Administration'a office of Sea Grant, U.S. Department of Comerce, and by the state of Wisconsin.

WELCOME
Richard W. Soderberg, Aquaculture Specialist, Sea Grant Advisory Services, University of Wisconsin-Extension, Madison, Wisconsin

1 INTRODUCTION - THE PRODUCTION OF YELLOW PERCH FLNGERLINGS H. E. Calbert, Professor, Department of Food Science, University of Wiaconsin, Madison, Wiacongin

6 REPRODUCTIVE BLOLOGY AND ARTIFICIAL PROPAGATION METHODS FOR ADULT PERCH Terry Kayes, Department of Food Science, University of Wisconsin, Madison, Wieconsin

24 OPTIMUM CULTURE REQUIRENENTS OF EARLY LIFE PHASES OF YELLOW PERCH Kenneth Hokanson, Chief, U.S. Environmental Protection Agency, Monticello Ecological Research Station, Monticello, Minnesota

41 INTENSIVE CULTURE OF YELLON PERCH (Perca flavescens) Graden R. West, Lake Mills National Fish Hacchery, Lake Mills, Wisconsin

55 TANX SPAWNING OF YELLOW PERCH
Graden R. Weet, Lake Mills National Fish Hatchery, Lake Mills, Wisconsin
56 EXPERIENCES IN PERCH PRODUCTION FRON THE LAKE MILZS NATIONAL FISH HATCHERY
Sherman W. Stairs, Hatchery Manager, Lake Mills National Fish Hatchery, Lake M111s, Wisconsin

63 PREPARATION OF A FINANCLAL BUDGET FOR A PERCH FINGERLING PRODUCTION OPERATION
Richard W. Soderberg, Aquaculture Specialist, Sea Grant Advisory Services, University of Wiaconsin, Madison, Wisconsin

70 CONCEPTS IN FISH TANK DESIGN
Ron Henry, Fish Culturist, Figh Control Laboratory, La Crosse, Wisconsin
GROUP DISCUSSION
S LIST OF REGISTERED ATTENDEES

Richard W. Soderberg
Aquaculture Specialist, Sea Grant Advisory Services University of Wisconsin-Extension, Madison, Wisconsin

Good morning and welcome to the conference.
The two major obstacles standing in the way of commercialization of perch aquaculture are excessive energy demands and lack of a rellable fingerling supply. We're predicting that by this time next year we"ll be running our growout units on a fraction of the horgepower presently used. Perch fingerling production is the problem we'll address today.

Because of their small market size and limited growth potential, perch aquaculture will be a fingerling-intensive proposition. Larger numbers of fingerlings will be required to produce a given weight of perch chan for most other species being cultured. For this reason, purchased fingerlings become a major element in the cost of producing a pound of perch. From an economic standpoint, it is difficult to fit a five to 10 cent fingerling into the cost of producing a fish that will sell for 30 to 40 cents when grown out.

The purpose, then, of this conference is to present what we consider the stace of the art in perch fingerling production to help reduce the cost of this element of perch aquaculture.

We have an impresaive group of speakers here today to accomplish this task. Dr. Harold Calbert, leader of the aquaculture research program, will get things started with a sumary of the University of Wisconsin's efforts in perch aquaculture. Terry Kayes, Department of Food Science, will give an accounting of his research on the reproduction of perch. Dr. Ken Hokanson from the United States Environmental Protection Agency will present the EPA's findings on the environmental requirements of larval perch. Sherman Staire, manager of the Lake Mills National Fish Hatchery and his former assistant, Graden West, wil relate their experience in the pond production of perch. I'w the extension agent for fiah farming in Wisconsin and I'll have a few words to say on preparation of a financial budget for a pond fisheries operation. Ron Henty from the Fish Control Laboratory in La Crosse will wind up with corrments from his experience in pond construction, fish tank design and other practical aspects of fish culture.

Harold E. Calbert
Professor, Department of Food Sclence
University of Wisconsin-Madison

The development of any sound system of aquaculture depends on many factors. One of the most important of these is a dependable source of young organisms that can be grown and marketed at the proper time. An aquaculture system for producing yellow perch is no exception.

To have a guccessful aquaculture system for yellow perch production the grower must have available a dependable supply of fingerlings at a reasonable cost. These fingerlings should be as free of disease as possible, be efficient converters of feed, be fast growers and should gevelop into fish of a quality that will meet market demands. Perch Ingerlings meeting these criteria have not been regularly available to the aquaculturist. The purpose of this seminar is to discuss some of the steps and problems involved in producing a better quality fingering.

The fingerlinge that have been available on the market have been mainly from wild stock. They have resulted from the incidental hatches from ponds, streams, lakes, etc. These have been seined and sold to help meet the market demand for fingerlings. The quality of these fingerlings has been quite variable with respect to the desirable characteristics just mentioned. Many times the supply has not been sufficient to meet the demand. The price per fingerling has varied with avallability, size and other factors. This is not to criticize the producers and sellers of these fingerlings. It is the best that they can do and represents most all of the fingerlinge that have been avallable from commercial sources.

One of the major goals of the University of Wisconsin's aquaculture research progran is to conduct research and develop the technology that is needed to produce better perch fingerlings. As this information is developed, it will be brought to the public as quickly as possible by mean: of publications and bulletins, seminars and meetings and by our extension personnel. This meeting serves as an example.

This past 1977 season is the first one in which we have produced perch fingerlings in quantity as part of our research program. All that we have produced are being used in our research program. From the experiences that we have had during this past season, we have learned various things that will guide us in our future work.

All perch fingerlinga hatched at the same time and exposed to the same enviromental conditions and feed supply do not grow at the same rate. Figure 1 illustrates this point. The two fingerlings pictured are from the May 1977 hatch. This picture was taken in the latter part of September 1977 when the fingerlings were being rewoved from the rearing ponds. During the intervening time both fish had been exposed to identical environmental conditions with respect to water temperature, food supply, light conditions, oxygen levels, etc. Yet the larger fingerling weighs about 10 times as much as the smaller fingerling. Why? Is it due to some inherited traits? We do not know. These are not two isolated fingerilngs representing the largest and the smallest of the hatch. We had wany of both sizes and sizes in between these.

Eigure 1. Yellow perch fingerlings of sane age and grown under slmilar conditions during the 1977 zeason.

If we could be assured that a large percentage of a perch tatch would result in fingerlags itke the larger one show, we would be well on the way of reaching one of our research poala.

To attempt to find the answer to some of these guestions, I would the to tell you as briefly as posstble wout some of our researeh phans for the $19 \% 8$ geason.

Presenty we are carrying about 450 adalt perch in a spectally designed tank that duplicates, up to a point, the conditions that these fist would experfence In a natural lake. my being expesced to light and temperatare madition that influence spamato, we tope that these Efth Whl have a nomal sommute cycie tu the 1978 seastin. At the proper time eggs will be stripped from the feviles and mitu fen the mater. The eggs mill be arttichally gerthuzed. The fexthized egas whe be hatehed under vartous eondttons.

One grou of ferthitzed egeg whl be placed directly into the fingering rateing ponds. They whe be allowed to hatch there and the barvae whil reasin in the pond as whil the eventwal fingerlings. These wila gend the stmmer in the ponds and be grown on natural and supplemental feed. They will be removed from the ponds in the late sumer of 1978. Figures 2 and 3 show this type of activity in the 1977 seasona.

Another group of ferthized eggs will be hatched in the laboratory. Attenpts will be wade to carry the newly hatched latyae from ege-sac stage through the fingerling stage ln the laboratory. This means that they will need a source of nutrients once the yoll-sas is utilized. We had modest success in the 1977 season with some formulated feeds used for this purpose. We have several other feeds that we wisk to try in the 1978 steason. Once these fish reach the small fingerling stage, sat have no trouble carrying them on formalated feeds.

Sone fertilized eggs will be hatched out in the rearing ponds and allowed to develop into fingerlings on the natural feed available in the pond. However, they will be in eages that have been so designed that they will be Lsolated from other larvae and fingerlings in the pond. Figure 4 shows the design of this type of restraining undt. By the use of adr pumps, the water in the pond can be circulated through the cages, thus bringing the natural mutrients in the pond to the latvae as they hatch and develop into Kingerlings.

The best fingerlings from the various hatches will be grown out to adult Ble with the anthpated use as brood stock. It is hoped that in this maxmer a straln of yellow perch can be developed that will be most suitable for controlled environment aquaculture. It will take many years and many generations of fish to reach thite goal.

FRY ISOLATION UNIT

Figure 4. Restraining cage used to isolate perch hatch in tearing pond.

Terty Kayes
Food beience leparthent
matversity of Wigegngia-Madigon

Intensive rish culture requires eithex ma abmont and maryestable supply of goung fish fromatural gharees or some mechandsm for con-
 culture of perch thtimately deperds mpon the atter approach because
 pablic waters and bectuse envicomental disturbonceman mokralyear chash fluctuathons make matuen supplids urdependables At bets,
 expenstve.

Methods are presently avaizable fot fatensively propagating sevaral spectes of fish. Infortanately, perch is not one of these, so three years ago began a research program to answer two majo duesthome Firet, can the annat remroductive cycle fe manipulated to suit the needs of hagh intensty aquetutture? and, Second, can perch be propageted on a barge scace when sequally nature fish ace avalyabe? The answers to these quegerons are nayto and probably,

Todey I an first going to outhne sone pertinemt actatis regardme the reproductive physhology of perch. Then I will etial some methods di propagating this species under controlled conditions. Time and experience will siow the extent to wheh these mathods con be applied to mass culture.

The perch has an annat reproductlve cycle huring when the size and maturational state of the gonads fluctuate dramatically. The maturational state of the gonads is generaly reflected in their siae. The term that denotes this is the gonadie sumatic index, wheh is essential. ly the stae of the gonads relative to the body.

Figure loshows how the gonadic senulfe fndex increases through the season: Note the males gtart out at zero and the gonads increase in size until they occupy about 15 percent of the total boty weifht. In femaleo, the index reaches 30 percent. In both sexes, the gonads begin to dicrease in size in August and september and continue to develop thronehout the winter until the flsh finally spawn in the spring. The winter period is not passive ox resting phase; it ls a period of active development.

The reproductivescycles in fish are controlled or influenced by a host of complex factors and interlocking mechantsas. Reproduction, as a phystalogical process, is controlled by the endocrime system, which in turn is controlled by the brain.

Figure 1.

Maturation of the gonads and spawning of fish are two separate proceases. The gonads obviously have to be mature before eggs can be released. The important mechanisms that control maturation of the gonads in fish can be divided into internal factors and external factors. Obviously a fish has to be well nourished to develop good gonads. Availability of a nutritionally proper food is a very important and basic requifement. Tied to this is the internal requirement for relatively good health. Photoperiod or day length is one of the cardinal factors influencing reproductive cycles, In the spring and fall, photoperiod is efther increasing or decreasing and evolution has cansed this to be a primary key mechanism in the environment to tell animals what time of the year it is. Another factor is temperature and there are also internal biochemical mechanisms, A final factor is tisasue "readiness." The gonads contain a variety of tisaues that give rise to egge and aperm. Hormones, experimental temperature regimes or photoperioda can be used to try to stimulate the gonads, but this only works at certain times of the year. The very simple reason for this is that at certain times of the year, the tissues will not respond to any type of stimulation.

The brain picks up stimuli from the environment and, through the pituitary gland, controls the reproductive cycle. The pituitary excretes a variety of hormones, one of which is called gonadatrophic hormone or GTH. These gonadatropins are secreted on a seasonal cycle to control reproductive chythms.

In the case of the male, the gonadatropin enters the bloodstream and reaches the testes, which are also endocrine glanda capable of secreting hormones which are primarily androgens. The gonadatropins also etimulate spermatogenesis or sperm production. Sperm are only present in the testes of fish at certain times of the year. The androgens excreted by the testes apparently are involved in this process.

A rather similar type of mechanism appears in the ovary. The gonada* tropias travel to the ovaries and stimulate production of estrogen, and oogenesis or egg production occurs. This is also a seasonal phenomenon. The major difference between eggs and sperm in fish is that the egs has a very large yolk made up primarily of fat and some protein. These proteins and fats are synthesized in the liver and syntheeis is under the conrol of estrogens. Yoik collection begins after the initiation of oogenesis.

Fish generally spawn at the time of year that is best for them. Trout spawn in the autum, whitefish in the winter, carp and biuegilis in the sumer and perch and walleye in the spring. There are a number of external factors that tell the fish when it is time to spawn. One posaibility is runoff from snow melt to stimulate spring spawning fish. Runoff is known to have an important influence in controling spawning of such fish as carp, but it is not known whether or not it influences spawning of perch. Photoperiod is probably the most important influence on perch apawning.

Other factors influencing perch spawning are temperature, spawning ground and behavior. It has long been known that perch spawn when the water reaches $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$. Often fish will not spawn unless an active spawning ground is available-they will simply absorb their eggs. The female may also absorb her eggs if a male ls not present to make a behavioral stimulus. Walleyes will not spawn without the presence of a

Figure 2.
male, but perch will, under some conditions, if other internal factors are working.

There is a regulat chronology of events that occur in fish when they spawn that begins with a mature gonad and the various accessory organs that are involved in spawning. There is a fluid shift into the gonads as they hydrate and begin to ripen. In the females, there is a great deal of abdominal swelling. The next step in most fish is ovulation and spermiation. Ovulation is simply the release of eggs from follicles in the ovaty into the internal structure where they are ready to be released. Spermiation is the release of sperm from lobules of the testes into the interior where they can be released on spawning. Finally, spawning itself takes place and again, the endocrine system is Involved. Gonadatropic hormones have been used in fish culture to stimulate the process of spawning. it is known that these hormones, either directly or indirectly, stimulate the final maturation, hydracion, ripening, ovulation and spermation. There is some evidence that the actual act of spawning, as opposed to ovulation and spermiation, is ander the control of another set of hormones, vasatacin and isotocin, that cause violent muscle contractions.

In the sumer, fish have a lot of food available, they eat well and are healthy. In the late sumer and early fall, they put on an enormous amount of fat. I frankly belfeve that this prematuration fattening is critical to the later maturation of the gonads. These fish need a fat depot in order to get full development during the winter.

In the male, spermatogenesis is initiated in August or September. By late autumn, it is very active. After a time, most of the sperm cells In the testes convert to sperm and milt can be produced as early as December or Jantary, but I don't know if it is viable. The gonads are In a rather quiescent state until spring when the water warms and sperwiation occura. Eventually, perch have a very copious milt.

Females atart maturing at about the same time. Vitellogenesis occurs actively throughout the entire winter. I have used gonadatropins to stimulate the release of eggs as early as December but they were not fully developed. In the spring, in rapid succession, final maturation of the eggs, hydration, ovulation and spawning take place. The entire period of spawning in a given lake is extremely short, lasting only a week or two, and is surprisingly consistent from year to year.

During the period of initial development of the gonads, temperatures in the range of $16-20^{\circ} \mathrm{C}$ are required. Decreasing photoperiod also plays a part in this initial step, but temperature is the most important factor. After about Deceober, it doesn't matter what photoperiod is meintalned, but I would suggest duplicating the natural light conditions through the winter. While photoperiod is not too inportant during the winter, low temperatures are very important for this stage of development. Dr. Hokanson will discuss this fact in his presentation, but it is important to note that if brood stock are held at well head temperatures of $10^{\circ}-11^{\circ} \mathrm{C}$ through the winter, the eggs will be in very poor condition when spawning occurs in the spring.

In Lake Mendota, we set our nets when the ice goes out and get our ftest green fish about April ?. Spawning peaks about one week liter. On about April 9 we get our peak catch of frmales and on about April 21

Control of Spawning

EXTERNAL FACTORS
Run Off
Photoperiod
\checkmark Temperature
Spawning Ground

INTERNAL FACTORS

General Health Biological Clock
Tissue Readiness Behavior

Brain
Pituitary

GTH (s)

Behavior

Vasotocin
rsorocin

Spawning

Figure 3.
we normally see our last green fish. I have followed this cycle for three successive ypars now and $f t$ is almost identical each year.

Figure 4 shows some experimental results of natural spawning of perch In tanks. I compared the cumulative percent of females that spawned on two different photoperiods. The control group was at the normal epring photoperiod of about $13-1 / 2$ hours and the experimental photoperiod way $g i x$ hours, corresponding to a normal winter day. Starting In Pebruary, i gradually increased the temperature to 10°. There is certain amount of fiuctuation, but the interesting poinc is that irrespective of the photoperiods, the first spawning in the laboratory occurred almost the exact time as spawning started in the field. The difference was less than a week.
 clocke and tiasue readiness. Regardless of the photoperiod and temperature regime, captive females will spawn during the month of April. Thene egge, however, won'c be any good uless the fiah has been under the proper conditions for maturation.

Methods have not been developed for manipulating the perch's annual reproductive cycle under controlled conditions. It may be indeed poselble, but if ever auch methods are developed, they will have to take Into consideration the fact that perch reproductive tiasues are slow to repond and may be precondicioned by prior reproductive inistory. Elaborate environmental controla may be necesaary to control temperature and photoperiad. Good long-term nutrition will be required, oapecially in che femalea.

How I will diacust procedures that have been developed for increasing the predictability of perch spawning and for artificially fertilizing parch egge.

We performed an experiment in which we brought wild fish into the laboratory as goon an the Lee went out in Lake Mendota. Twelve females and 24 males in the green condition were placed in a 200-gallon tank and eubjected to a varlety of different photoperiods and temperatures. The areateat amount and predictability of spawning were at a temperature of $14^{\circ} \mathrm{C}$ and a natural photoperiod of $13-1 / 2$ hours. If the photoperiod was exceanively long or short, all the fish still spawned eventually, but over a longer period of time. If the fish are held at $5^{\circ} \mathrm{C}$, epaning will be delayed about a week, but it wili still occur. While fish will mam, if forced to, at this temperature, they will not be euccessful, as the eggs will often water harden before being released, kililng the female, and the males won't fertilize the eggs at this tempersture.

The point ${ }^{\prime}$ d like to make on these tank spawning experiments is that the femaleg will drop their eggs but the males will not necessarily fertillze them. In fact, a female will drop her eggs without a male present. This is an addicional reason for develuping methods for artificially fertilizing the eggs.

Figure 5 diagramg natural mpawing in perch. In nature, spawning is contlnuous over a perlod of about two weeks, so there is relatively little predictability. If these fish are to be spawted artifictally, the predictability must be increased so the eggs can be obtained appraximately when required.

Natural Spawning of Perch in Tanks

Spawning in 2 to 5 days
with carp pituitary extract or HCG or clomiphipherecitrate at 14°

Late in the spowning season fish (25)
spawn even at low temperatures $(56 \mathrm{c}$)

Figure 4.

Natural Release of Eggs
Important Considerations for "Artificial" Methods

lIst $1 / 4-1 / 5$ expelled ratter rapidly
End of ribbon comes our more slowly, last several inches retained in curry.
Release takes several minutes tohours, clepending on temperature, swimming speed, whether ribbon carries on obstacles in water.

Result is well-stretcheo ribbon without adhesions.

Figure 5.

Hormones and drugs have been used for this in aquaculture for many years and Figure 6 sumarizes some of our experimental results. The bottom graph shows the spawning pattern of fish injected with a saline solution. Spawning was spread out over seven days. The top graph shows how carp pituitary extract makes all the fish spawn on the same day. Human Chorionic Gonadatropin had a very similar effect. Clomicin citrate, a drug which stimulates the pituitary to secrete its own gonadatropin, didn't work quite as well in improving the predictability of spawning.

It was long thought that perch spawn at oight, Actually, perch usually spawn first thing in the morning. If injections are given on two successive afternoons, the fish will spawn the next day. About 80 percent will spawn in the morning, so not only can hormones be used to predict the day these fish will spawn but also the time of day.

When the female spawns, she is swiming and the ribbon starts to come out and unfold like a very long concertina. The drag caused by the movement of the fish causes the ribbon to stretch. The first quarter or third of this ribbon is expelled rather explosively and the rest comes out more slowly. The last several inches is sometimes retained by the female. Release of the entire egg ribbon takes several minutes to hours depending on swimming speed, temperature and whether or not the ribbon catches on an obstruction to aid in 1 ts removal. With no obstructions present in $14-15^{\circ}$ water, the entire egg ribbon will be expelled in two to three minutes, but in 5° water it takes hours or even days for the female to rid herself of the egg mass.

As the female is expelling the egg ribbon, a pod of from two to five males follow to fertilize it. The males lay down a path of milt alongside the female and she drags the egg mass through this cloud.

Because of the accordion-like nature of the egg mass, it is important that it be mechanically stretched so sperm can reach the inside folds. Even if the entire mass is fertilized, the eggs will die if the ribbon folds back, robbing them of oxygen. This stretching normally takes place in nature, but if the fish is confined to a small tank where it can't swita as well and nothing is present to catch the ribbon, it won't be mechanically stretched.

Because of this unique egg mass and necessity to keep it stretched, perch egg culture presents some incubation problems not encountered with other fish.

Figure 7 summarizes our results in natural spawning of perch in tanks. I would like to emphasize here that no substrate or males are necessary for perch to drop their eggs. I looked at 80 females spawned during two seasons and got 41.8 percent fertility by natural fertilization. This was in 180-gallon tanks with 10 to 15 females and 20 to 30 males. Fifty-seven of the 80 ribbons showed fertility and of these, 58.6 percent of the eggs were fertile. In another experiment, I used a 45gallon tank with one female and three males. Out of 40 ribbons, I got 70 percent fertility and 85 percent fertility of fertilized ribbons. This 85 percent figure agrees well with some of the old literature in fish culture. Next I'll discuss how this can be improved upon.

Figure 6.

Natural Spawning in Tanks $\sim 14^{\circ} \mathrm{C}$ Q's Not necessary for release:
No substrate necessary.

* Handled and injected every other day.

Manual of Fish Culture 1997-79\% of 955000eggs hatched in "SHAD JARS." Natural spawn in concrete tanks, infertile ribbon rare. No details.
Needs more work on effects of
Control-light intensity, noise, disturbances.

Artificial apawning is the mechanical stripping of the egss from the feale and wilt from the male, mixing the two and culturing the eggs. Hormones help increase the predictability, and close observation is necessary. A fish cannot be stripped before slie is ripe. it takes experience to develop the skill required to perform this operation.

Trout and walleye eggs are normally fertilized by the dry method. Sperm and egge of fish are deactivated very quickly by exposure to freah water. Spern loses its capacity to penetrate the egs 30-60 seconds efter contacting water and egga begin to water harden fomediately so that they cannot be fertilized after a few minutes in water. In the dry method, the eggs and milt are stripped into a dry container, mixed thoroughly and then water is added to activate the aperm and permit fertilization.

Parch egga are difficult to fertilize by this method because the nature of the ribbon maken mixing difficult; the ribbon doesn't get atretched and the sparl glutenates like cooked egg whites. In a sample of 30 fioh, I got 80 percent fertility using the dry method.

An older tachnique of artificial apawning is the wet method in which the egge are stripped, water is added immediately and the wilt poured In and mixed as quickly as posaible. I tried this with 51 fiah and got 83 percent fartility, which is very close to the results obtained by the dry method. To examine the importance of the time factor. I tried adding the water and waiting one winute before adding the wilt. I got the anse level of fertility but a tremendous increase in the number of deformitiea in the developing larvae. If five minutes elapse before adding the milt, fertility drops to $15-16$ percent and nearly all larvae that aurvive are deformed. In practice, the fish culturist has enough time to add the milt if he is well organized.

Carp have very glutinous eggs and to facilitate fertilization, a variaty of solutions has been used instead of fresh water. These solutions, usually containing tannic acids or salines, have two basic functioni. Firat, they tend to cut the mucous that covers the eggs to facilitate aperm penetration. Secondly, sperm life is increased and weter hardoning ia decreaged slightly in saline solutions. As this has been used for quite aome time in carp culture, 1 tried a solution of .5 percent adium chloride on perch. When 1 used the wet method with this saline solution, 1 got 97 percent fertility. I oniy had the chance to do this with eight to 10 fish so it needs to be repilicated, but I think it can be improved so it will be feasible to incrase the succase of fertility by the artificial method to very near 100 percent.

Do you use ary fungioide treatment on the egge?
Kayes: If you are using some type of incubator rathet than a pond to incubate eggs, it is definitely required, especially when the incubator is loaded heavy, When culturing eggs in feath Technicabinets, we pour in $30-40 \mathrm{ml}$ of formalin periodicaliy. The flow through the incubator is great enough so this treatment doesn't seem to hurt the eggs, and it keeps the fungus down.

Do you treat the brood stook after hamiling them to cui dow in fungus problems?

Kayes: This is rarely necessary because the whole sequence of events is of rather short duration. I rarely hande a fish tore than twice in the spawning process.

Do you have a procedure by which you can accurately determine the spowning date of all your females?

Kayes: Most of the work that I have done has been experimental and not for production purposes, so I don't have a set formula for injecting fish on a large scale.

Is hypothesization a good method for perch?
Kayes: It is used very routimely with many kinds of fish. The problem ia that sowe fish have a great deal of species mpecificity to a particular hormone. Most of theae hormones are proteins so within different species they may be interchangeable, but at the biochemical level they ${ }^{\text {liffer }}$ somewhat. A good example of this is that bluegills, bass and similar fish do not respond to mammallan hormones. You can buy mamalian hormones on the market but you can't generally buy fish bormones, so you have to collect your own pituitary glands from the bpecies in question. You can buy acetone extracts of carp pituitary material from two or three different sources in the country. Some of them aren't very good, however.

What is the incobation time and is it temperature devendent?
Kayes: The incubation period is about 10 days and it is influenced by temperature-but not as much as you might think. There are ideal conditions for incubating the eggs and under these conditions they will hatch in about 10 days.

How well do the fish spawn naturally in indoor tanks?
Kayes: Our success in this has been variable. Sometimes the males will fertilize the eggs and sometimes they won't. It's easy to determine whether male perch are capable of spaming as they put out more milt
relative to their body size than most fish and it flows freely during handling. The question is, then, why don't they fertilize the eggs? The answer is often bright lights, loud or abrupt noises or other disturbing influences.

Do you think spawming would be more efficient given timee males per female rather than only two?

Kayes: We don't have any data on that but I think it's something that really needs to be looked at, especially for pond raising. Most fish culturists use more males than females but I'm not aware of any real data that suggest the ideal ratio for perch.

Does using the . 5 percent saline solution lengthen the period during which the eggs can be fertilized?

Kayes: I haven't had the opportunity to check that out.

Do you try to do it inmediately?
Kayes: It ie always best to do it as quickly as possible, within about 20 ecconds. That's realiy quite a lot of $t i m e$ and it shouldu't present any problems.

But you wouldr't recommend adding the saline bolution at exactly the same time as you put the milt in?

Kayes: I don't think that it would give you any advantage but I can't be dure about that.

By controlling climate, can you get perch to spown in December, or different months of the year under lab conditions?

Kayes: We ${ }^{\text {r ve done some work on that but there are a lot of logistical }}$ problems. The tissues are very slow to respond, so experimentally the whole cycle hasn't been put together and shown that it can be done. This would be a very elaborate experiment. I have worked with various segments of the reproductive cycle and shown that certain kinds of temperatures and photoperiods are important. But to get a spawning fish through the entire reproductive cycle under controlled conditions hasn't been done yet. Perch do spawn at slightly different times of the year depending upon where they are in the world and they are a widely dispersed species. There is a European species very closely related to ours and they have been introduced to Australia. There is a real reason to think that the first reproductive cycle a fish goes through keys it in on the annual cycle of where it is at that t ime.

My point is that the fintshed produet is all woine to be cominur of at the sume time.

Ruyes; Not necessarily. Once you get the perch fingerlings, you can hold them at lower temperatures for the duration that you need. As to how long you tall hold fish back without creating problems is not really known. We have held perch fingerlings for months and nonths at low temperatures and they didn't grow, so it would be feasible to keep them at reduced temperatures and grow them out whenever you want.

1
Do you injeet the mates as weit as the jomules?
Rayes: No, I don't.

Wo the males maturally get ready from the femates' intherion:
Kufes: The males always have plenty of wilt at this time of the year. There is never a problem in males being able to spawn. Behavioral participation of the femile is required.

Fo you nover have any problem getting thom oynchromised?
Kayes: No. When we have gotten good natural fertilization in tanks there has not been a problem of synchronization. I might also indicate here that fresh males generally give far better fertility than those that have spawned several times in the same season.

How many egas does a perch produra?
Kayes: It depends upon the size of the fish and her nutritional history. A $1 / 2$-pound fish will put out from 25,000 to 50,000 eggs.

Do you see any possibizity of holding fertilized eggs in dormancy over a period of time?

Kayes: I think it is possible from a theoretical point of view but I'm not sure it would have any practical application. We are working on ways of preserving spern, which is much easier than preserving eggs.

In detemining percentage of fertitization, do you make an actual count?

Kayes: Yes, but at what stage of developant the count is made is rather arbitrary. One hundred percent fertility does not mean 100 percent hatch or 100 percent larval survival or 100 percent fingering survival.

What ts the life span of a wild perch livino in a lake?
Kayes: I don't know. If you consider the gurvival of all the fish that hatch, I doubt if the average would be a year-it would probably be just a few months. If they can survive predation, they may live six to seven years, but this is certainly not average.

Does holding fish at reduced temperatures result in ans rotarding of the future growth rate?

Kayes: Not as far as we can tell.

Do you have any indication that the seond or third generation firh would have higher viability and grovth rates?

Kayes: No. We haven't got third generation fish.

How do you separate the gelatinous mass from the larvae when they hatch?

Kayes: This is very difficult. The most practical procedure is to remove the ribbons from the incubator before they start hatching. The fry can't be fed indoors anyway so the best time to take them to the ponds is just before they start to hatch. They start getting hard to handle on the fifth or sixth day.

Where do you get your brood stock?
Kayes: We catch them in Lake Mendota. We have obtained some from the National Fish Hatchery at Lake Mills.

Where can you buy brood stock?
Kayes: There are very few people in the Midwest selling perch. 1 doa't know of any source right now.

At what temperature do the fich spaw in the lake?
Kayes: We get our best harvest of adult fish when the lake is 8 or 9°. When we get the fish back to the lab, we lce down our tanks to this temperature and let it rise gradually to well head temperature which is about $12^{\prime \prime}$.

Do you have any figures on the number of fingerlings harrested in relation to the number of fry stocked?

Kayea: Last apring was our first real experience with this and we didn't know how many fingerlings we could produce so we stocked about 500,000 eggs in our $1 / 3$ acre of ponds. Only about $1 / 3$ of those eggs were fertile. We harvested between 20,000 and 25,000 fingerlings.
I don't understand the relationshir between the outdoor and indror phases of production.

Kayes: We don't have the technology to raise fingerlings indoors so we do it in ponds. We can raise a relatively large number of finger \rightarrow lings in a samall acreage of ponds. Obviously we can't grow them to
market size itr that same acreage. That is where the indoor grow-out units roue in.

Can you place the eqos in the ponds immediately foltowing fertilization?

Kales: Yes. That's up to the fish culturist and how much time he has. At any rate, it should be in the first seven days or so following fertilization. It takes $10-11$ days from time of fertility to time of hatch. Two to three days before they hatch they become very difficult to manage.

You said you fertilize the ponds. What do you mean by that?
Kayes: The ponds can be fertilized with comercial fertilizer or organic fertilizer. We use alfalfa pellets to increase che plankton development. You have to have the pond ready before you put the eggs in.

optiman culture requirements of the mariy life phases of THE YFLION PERCH

Kenneth F. F. Hokanson
Environmental Protection Agency
Ecological Research Station
Monticello, Minnescta

My presentation will sumarize two major activities in our laboratory. The firat set of experiments determined the temperature requirements of the different phases of the yellow perch's cycle. Secondly, we tried to optimize the culture requirements chrough the 11fe cycle. The purpose of this type of research is to evaluate candidate test species for bioassays to test the impact of toxic substances on the life cycle. This objective is quite different from that of the aquaculturist who is trying to optimize the yield per unit cost of the product. Our objective is basically to optimize the survival and rearing techaiques of relatively small numbers of animals.

This paper will describe the temperature requirements of the different phases in the early life cycle of the yellow perch, our experience in the culture of larval yellow perch and some insight on the requirements for growth and survival of juvenile perch.

Development of the perch begins with the cleavage embryo. This is the period when the germ cells are beginning to divide to become a multicelled stage. As the embryo develops, a strip of tissue can be seen that forms a curled band around the yolk sac. The yolk sac provides endogenous nutrition to the larva before it begins to feed. Later larval forms are the pelagic and dimercel stages. The juvenile resembles the adult except for its maturation and reproductive functions.

Reproduction involves a complex sequence of events starting with maturation and leading to spawning migrations. The spawning act itself involves a deposition of viable gametes, the embryo and larval development and the commencement of independent feeding, which is the real bottleneck in the culture of this spectes.

The important things to review from Mr. Kayes' talk that have relevascy to the series of experiments that 1 will describe are, first of all, that there is a fattening period, or refractory period, following spawning in the summer months. This is the period in which the remaining residual ova undergo resorption and the new germ celis multiply to make the new complement of ova for the next spowning season. This period lasts roughly from June through August, at which time the ova begin to grow in size. The second important point to recall from Mr. Kayes' presentation is that the principal gonadal growth phrase, particularly in the female, occurs during the winter months when body growth is minimal.

In the first year of our experiments at the Water Quality Laboratory in Duluth, we held brood stock at various temperatores, inchuding the natural Lake Superior temperature regime. These fish were introduced into experimental spawning tanks and they spawned very well, particularly those that had experienced a natural temporature cycle. Fish
that had been exposed to experimental temperatures greater than $20^{\circ} \mathrm{C}$ did not spawn at all.

The second year of experimentation, we started earlier so that the fish were in the experimental tanks when the eggs started to grow. Again we controlled the temperatures and the only fish that spawned were those that had been exposed to the coldest temperature.

This led us to a final series of experiments where we wanted to expose the adult perch to a series of low constant temperatures, which we refer to as the chill temperature, for different durations. At the end of the chill period we increased the temperature at a rate of $2^{\circ} \mathrm{C}$ per week, similar to the natural rise in temperatures in Lake Mendota, which we were trying to simulate. This gave us 16 different types of temperature regimes, some of which were accelerated above the natural cycle and sowe which were slower than the natural cycle.

Figure 1 shows the experimental results of these last experiments.
The graph shows the proportion of females that spawned plotted against the chill temperatures and the chill duration. We feel that successful spawning really measures successful maturation. Chill temperatures no higher than $6^{\circ} \mathrm{C}$ are required for 100 percent spawning participation. The chill duration needed to be at least 185 days from October 3. When we accelerated the temperature too soon, fewer and fewer females ripened and matured by the time natural spawning temperatures were avallable. The experiment ended when experimental temperatures reached $20^{\circ} \mathrm{C}$ because we couldn't keep the fish alive due to columaris and we already knew from previous experiments that viable eggs could not be produced at this temperature.

Since these fish had freedom to select their own temperatures to spam, we measured the temperature at the time the egg masses were found in the experimental tanks. We found that the fish on the accelerated cycles spawned a little sooner than the controls. We obtained spawn as early as March and as late as late June in the overall treatments. Figure 2 shows the chill duration and temperature plotted against the temperature at which the fish spawned.

Over 80 percent of these fish spawned at the temperatures that are normally observed on the spawning grounds in late April through May when this stock of fish spawns naturally. The time of spawning can be advanced or delayed slightly but then the fish are spawning when the water is either warmer or colder than the normal spawning temperature.

There are natural perch stocks in southern latitudes that spawn as early as late February and northern fish that soawn in early July. I feel that the adaptation of the adult reproductive cycle is probably occurring at the time of first maturicy. This needs experimental verification but manipulation of a given adult cycle is very difficult.

Additional insight on cemperature manipulation was gained in our experimental work with northern pike. We raised pike over the winter at ambient lake temperature and at $20^{\circ} \mathrm{C}$. When we sacrificed these animals in the spring, the pike held at normal cemperatures were small, but they had very large ova. The $\ddagger i s h$ held in warm water were much larger, but had very small ova. What happened is that at high temperatures, we retarded the rate of development of the ova. The males held at normal

Fic. 1. Percentages of female yellow perch tPeria flarescens) that spawned during exposure to four chill temperatures (4. 6. 8. and la' (') of different durations (123-242 dass from Octoter 30). Temperature was increased at a rate of 2 " C ahh to a maximum of $20^{\circ} \mathrm{C}$ after termination of the expmosice to the various chill temperiatures (fiom Jones et all. Environmental Research Laboratory Dutath, tupublished data).

Fig. 2. Spawning temperature observed at the lime of laboratory spawning of jellow perch from Minnesota that had been exposed to fuur chill temperatures for vatious periods (from Lones et al. Environmental Research Laboratory-Duluth, unpublished data) Chill duration was the time of exposure to chill temperatures from October 30 to beginning of spring rise in cemperature at $2^{\circ} \mathrm{C} / \mathbf{w k}$.

Reprinted by permission. From: "Temperature Requirements of Some Percids and Adaptazions to the Seasonal Temperature Cycle," by Kenneth E.F. Hokanson in Journal of the Fisheries Research Board of Canada. Volume 34, Number 10, 1977, p. 1528.
temperatures matured as expected, but those held at elevated temperatures had very large testes in various stages of resorption.

It appears that there are different rates of development in the male and female cycle. When the temperature is too high, the cycle gets out of synchrony.

After obtaining the egg ribbons from these fish we measured the viability by taking a subsample, incubating it and counting the enbryos when development became visually apparent. We found that we got maximum egg viablifty at $8^{\circ}-11^{\circ} \mathrm{C}$ with reduction increasing as the temperature extremes of 4° and $18-19^{\circ}$ were approached.

Figure 3 shows the results of some work done at the University of Mnnesota on the walleye.

They held adult walleyes at six different temperatures prior to fertilizing the ova. Then they incubated subsamples of each batch of fertilized eggs at different temperatures and finally measured the percentage hatched as a function of incubation temperature. We see that the tolerance ranges from 4° to 20° for walleye, but the real effect of the holding temperature on the adult is to lower the maximum percentage of fertility of the ova. The higher the temperature, the lower the proportion of eggs that are fertile. The percentage hatch is a function of the accilmatization temperature of the adults as well as the incubation temperature of the eggs.

The implications for fish culture are that with modest temperature control, the adults can be preconditioned. We suggest that temperature affects the production of the specific gonadatropin that is involved in the ovulation and the ripening of eggs. It is possible that \&emperature control could be used in lieu of hormone injection for control of ovulation in fish culture work.

We designed our second group of experiments to examine the temperature requirements of the embryo and early larval stages of perch. First we simply exposed the eggs to constant temperatures right after fertilization. We knew that the temperature requirements changed with che state of development and we wanted to start with the embryo. Secondly, we reared the advanced embryo and exposed this life stage to a series of constant temperatures. In the third series of experiments, we started the larvae at $5^{\circ}-10^{\circ} \mathrm{C}$ and exposed them to rising temperatures at different rates of increase. Figure 4 shows the results of these experiments.

Graph A shows the results of incubation it constant temperatures. There is a relatively narrow band of survival to the pelagic stage. Graph B sumarizes the results of exposure of test temperatures to a more advanced stage of development. Note that the tolerance range for the hatchability of the larvae exposed continuously is about 7° to $20^{\circ} \mathrm{C}$. However, when they are exposed at a more advanced stage, they can tolerate a much higher temperature range up to about $23^{\circ} \mathrm{C}$.

These experiments of rising temperatures showed that the best hatchability was obtained when the hatching period was the shortest. It is important that the larvae escape from the egg mass as quickly as posgible to minimize mortality from physical and mechanical problems

Percentage of walleye (Sizostedion vitreum vitreum) eggs that hatched at various itcubation temperatures after fertilization at six temparatures from 6 to $21^{\circ} \mathrm{C}$ (from Smith and Koenst 1973).

Figure 3.

Reprinted by permission.
From: "Temperature Requirements of Some Percids and Adaptations to the Seasonal Temperature Cycle," by Renneth E.F. Hokanson in Journal of the Fisheries Research Board of Canada. Volume 34, Number 10, 1977, p. 1531.

Effect of constant incubation temperatures on percentage total hatch, normal hatch, and swim-up larvae of known aged yellow perch embryos-replicates combined. (A) Embryos incubated at test temperatures from fertilization to larval swim-up stage; (B) embryos incubated at $12.0^{\circ} \mathrm{C}$ until neural keel formed, then at test temperatures to larval swithup stage, Fate of eggs shown as percentage differences

Figure 4.

From: Effects of Constant and Rising Temperatures on Survival and Developmental Rates of Enbryonic and Larval Yellow Perch, Perca flavescens (Mitchill) by K.E.F. Hokanson and Ch. F. Kleiner in, The Early Life History of Fish, Proceedings of a symposium of the Scottish Marine Biological Association at Oban, Scotland. Edited by J. H.S. Blaxter May 17-23, 1973, p. 442.
associated with hatching. Our best results were obtained with fertilization at 10° and increasing the temperature at one degree per day so that hatching took place at $20^{\circ}-24^{\circ}$. The best rearing condition is the rising temperature sequence wifh optimizes the requirements of the different stages of development from early embryo to late embryo to the larval stages.

Figure 5 sumarizes the time spans of some of the different stages of development of yellow perch. This grapls plots the time in days against the mean temperature during incubation. The dashed line represents the time of hatch. The lower curve, labeled 1, represents the time it takes to get to the beginning of the formation of the ewbryo, referred to as the formation of the neural keel. Curve 2 is the start of the heartbeat and curve 3 is when the eyes are totally black. When the mouth and opercular movenents are synchronized in a regular breathing fashion, hatching will occur very shortly.

Curve 6 represents the time when the newly hatched larvae begin to swim up. At this time, swiming is very labored until the larvae reach the surface and fill their swim bladders. After they have taken on air, they become free swiming and begin to feed. One of the significant findings of our work in regard to cultural applications was that the larvae begin feeding as soon as they are free swiming rather than after the yolk sac is absorbed, as is commonly suspected.

Curve 7 represents the median time it takes an unfed larva to starve to death. A critical period in development is the two days or so after the larvae become free swimining, in which they are capable of capturing prey. It is in this period of between $1 / 2$ day to two days that most of our wistakes in culture are made.

Our work on the culture of larval yellow perch under laboratory conditions began in 1968 when we were looking for candidate test species for chronic toxicity tests. The early experiments involved the mass culture of eggs in six-foot diameter circular tanks and feeding the larvae with brine shrisp. There are at least two kinds of brine shrimp, San Francisco stock and a Utah strain, one of which is larger than the other. We tried both forma and our survival was less than 5 percent with this food source.

At about that cime, our laboratory began investigating the first foods of larval fish and found that the perch start feeding on copepod napulit, or similar form such as cyclops, very large rotifers such as polyarthra and a very few clodocera of that given afze range. In other words, they have very specific feeding habits. They need live zooplankton of a certain aize and abundance.

Arwed with this information and our knowledge of the temperature requirementa, we get up a preliminary test in an aquarium. We stocked 50 larvae, set up an optimum temperature regime and gave them a surplus of life zooplankton. After a month, we had about 80 percent survival, which is very good for the culture of percids in general. We found that the best condition involved almost continuous light, presumably because this prolonged the feeding period.

Wth this preliminary success, our group started to design a series of experiments that would optimize the conditions for rearing perch under

Relationship between temperature and median time of development of yellow perch embryos and larvae. (1) Neural keel: (2) heart beat; (3) retinal pigmentation; (4) branchial respiration; (5) mass hatch; (6) swim-up larvae; (7) unfed larvae mortality

Figure 5.

From: Effecta of Constant and Rising Temperatures on Survival and Developmental Rates of Enbryonic and Larval Yellow Perch, Perat flavescens (Mitchill) by K.E.F. Hokanson and Ch. F. Kleiner in, The Early Life History of Fish, Proceedings of a symposium of the Scottiah Marine BLological Association at Oban, Scotland. Edited by J.H.S. Blaxter May 17-23, 1973. p. 444.
continuous flow, because our chronic toxicity tests involve a continuous flow apparatus. Some of the general conclusions from this work were that better survival was obtained with slower water exchange rates, and survival was better in dark tanks than those with light backgrounds. This is probably related to improved perception of prey against a dark background. We generally found that at least 250 zooplankton organisms per larva per day were required to obtain a survival of at least 50 percent. At this time, fish have the highest metabolic rate per unit body weight and they have a relatively rapid turnover time of food. When these fish start feeding, they may be gaining 20 percent or more of their body weight per day and the turnover time of food in their gut is probably less than one hour.

Not only do we need adequate quantities of food but we need to feed frequently. Many of our cultural mistakes are made in getting the right quantity of food of the right size at the right time to these fish. This is where the observation of the turnover tifte of water in the tank comes in. The faster the water flows, the faster food organisms are flushed out of the rearing tank and food density is reduced.

I would suggest that for future work on larval feeding, smaller strains of brine shrimp should be investigated.

Probably the only practical way to produce large numbers of fingerlings is in ponds. The state of Minnesota has been doing this for years in their valleye program and the aame principles would apply to perch culture. It is very important that eggs be placed in the ponds before they hatch as the larvae are extremely sensitive to any handling, even in a bucket.

We found that after about three weeks on zooplankton the fuveniles could be converted to dry feed.

Another important observation we made is that year-class atrength of percids in general is enhanced by increasing temperatures. In general, atronger year classes are produced in warmer years than in colder years, as illustrated in Figure 6.

We can assume that burvival is dependent upon growth, particularly in the larval stages. Growth is really the net effect of the eavironment on several activities: the consumption rate, metabolisil and activities of the animal. Temperature affects the distribution rate of the assimilated foodstuffs. For instance, when food is unlimited, maximum grouth potential is within a particular temperature range. By lowering food availability the range for growth is much more restricted. Optimum temperatures for growth wust be evaluated in respect to food avallability.

Figure 7 sumarizes some of the other work that was done at our lab on the effects of temperature on the growth and survival of juvenile perch. Juvenile perch were simply exposed to different test temperatures and then the temperature was increased at a rate of about $1^{\circ} \mathrm{C}$ per day. It's interesting that the maximum temperature perch could tolerate was about $33^{\circ} \mathrm{C}\left(91^{\circ} \mathrm{F}\right)$. The optimum temperature is quite near the lethal limit when food is available in excess. Note also that the mortality rate increases very sharply as the optimum temperature for growth is exceeded. The cultural application to all this is that if feed is in short supply, survival will be increased by holding the temperatures somewhat below the optimum for growth.

TEMPERATURE
Theoretical effects of iemperature change on the food consumption, energy budget, and scope for growth of a hypothetionl poikilothermic animal having food available in different amounts (from Warren 1971).

Figure 6.

Reprinted by permission.
From: "Temperature Requirements of Some Percids and Adaptations to the Seasonal Temperature Cycle"by Kenneth E.F. Hokanson in Journal of the Fisheries Regearch Board of Canada. Volume 34, Number 10, 1977, P. 1534.

Instantaneous rates of growth and death (\%/day) of ycunt-of-tne-year yellow perch reared at different constart temperatures with urlimited ration. The horizontal bars above and bolow each mean indicate the ranee between duplicates at each test temperature. Variability in growth rates betweer duplicates was sis small at 16° and $18^{\circ} C$ that the range bars appear $n s$ ore. Growth rates of the original replicates at $28^{\circ} \mathrm{C}$ are marked by the asterisk.

Figtre 7.
From: Temperature Effects on Young Yellow Perch Perca flaveacens (Mitchill) J. Howard McCormick Environmental Research Laboratory, Duluth, MN 55804, USEPA Ecological Research Series, EPA-600/ 3-76-057, May 1976. p. 7.

Figure 8 displays a generalized pattern of the effects of temperature on the mortality and growth rate of fish.

There is an optimum point for growth of the fish biomass and a populacion maintenance level where growth rate and death rate become equal. In the case of the yellow perch, the lower limit for growth is about $6{ }^{\circ} \mathrm{C}$ and the upper limit is about $31^{\circ} \mathrm{C}$. Above 31°, perch will still grow, as shown in Pigure 7, but there will be a high incidence of spinal deformities and high mortality.

The following chart sumarizes my presentation, showing the optimal and allowable temperature ranges for each life stage we ve worked with. I've purposelyput the temperatures in degrees Fahrenheit to make the chart more useful to practical fish culturists.

The most important observation here is the need for warm temperatures when the fry swim up. The embryo does fine in cold water but when they hatch, a rising temperature regime must be available. The larvae wll perish if the temperature is below $58^{\circ} \mathrm{F}$ when it comes time to start feeding. The manifestation of this is that a cold period in spring can cause a complete reproductive failure in perch.

Yellow Perch Temperature Requirements

Life Stage	Temperature (F)	
	Optimum	Tolerance Range
Maturation	$39-43$	<52
Spawning	46-52	37-66
Cleavage Embryo	46-54	39-70
Enbryo	54-61	4.5-73
Fertillzation to Hatch	50-68	44-68
Hatch to Swiw-up	$68-75$	37-82
Feeding Larvae	$(68-75)^{a, b}$	$50-(86)^{\text {a }}$
Juvenile - Survival	75-82	32-92
Growth (Excess Food)	$75-82^{\text {b }}$	$43-88^{\text {b }}$

[^0]

Constant temperature effects on specific rales of growth (g), mortality (i), and net biomass change $(k=g-i)$ for a hypothetical fish species fed excess rations. The zone of thermal resistance, where survival is time-dependent. is represented by the shaded area, bounded on the left margin by the ultimate upper incipient lethal temperature. Graphical endpoints that have particular physiological and ecological significance are identified by circles and labeled in the lower panel. Predicted shifts in growth response and optimum endpoints attributed to different stimuli illustrated in upper panel: A, diel fluctuation of acclimatization temperature of Salmo gairdieri (Hokanson et al. 1977): B. restricted food rations of Oncorhynchus nerka (Brelt et al. 1969): C. increased inilial size of O, nerka (Shelbourn et al. 1973).

Figure 8.

Reprinted by permission.
From: "Temperature requirements of Some Percids and Adaptations to the Seasonal Temperature Cycle," by Kenneth E.F. Hokanson in Journal of the Fisheries Research Board of Canada. Volume 34, Number 10, 1977, p. 1534.

Figure 9 illustrates the limits of the natural temperature regimes that are known to support the production of self-sustaining populations of yellow perch. The top line represents the warmest lake known to support perch and the bottom line, the coldest lake. The shaded box shows the extreme dates and temperatures in which yellow perch are known to spawn viable eggs.

These animals are really adapted to temperatures that favor reproduction at one extreme and growth at the other. This temperature regime optimizes requirements for all stages in the life cycle, not only for the brood stock but for the growth and production of the young, as well.

I would like to close my talk with a few comments on the culture of yellow perch. We had a hard time incubating large numbers of eggs. Work done at the University of Wisconsin has shown that mass culture of eggs is possible but the egg strand has to be spread out so the embryos obtain enough oxygen during development.

Whenever temperature control is employed, the total gas pressure must be kept in mind. As water is heated it becomes supersaturated, so facility design must incorporate aeration after heating to equilibrate the water prior to use in fish culture. Temperature control will be important in perch culture to optimize fertility of eggs and accelerate or delay the development of embryos so they hatch when pond conditions are most favorable.

Finally, $I^{\prime} d$ like to make a comment on heat sources. There has been a lot of talk about the beneficial uses of waste heat, particularly from electric generating facilities. There are some fish culture operations going on today using waste heat to accelerate fish growth. Our local utility in the Twin Cities has a demonstration project to utilize waste heat to heat a greenhouse. They feel that in ten years they will be able to produce enough vegetables to supply the entire metropolitan area by this method. I think that in $10-20$ years we will be burning coal to generate usable heat and power at the same time, and aquaculture is an attractive use for the heat produced.

Figure 9,
Reprinted by permission.
From: "Temperature Requirements of Some Percids and Adaptations to the Seasonal Temperature Cycle," by Kenneth E.F. Hokanson in Journal of the Fisheries Research Board of Canada. Volume 34, Number 10, 1977, p. 1542.

qUESTIONS AND ANSWERS

How would you evaluate pond culture versus laboratory culture in relation to stress?

Hokanson: To maximize growth, temperature must be optimized, and as the temperature approaches this optimum, food consumption must increase. If the food is not acceptable or mutritionaliy defictent, the fish will be under environmental stress. An example of this is the white crappie. This fish does better in the laboratory on frozen brine shrimp than on trout pellets because the natural feed is more acceptable even though it is nutritionally inferior to the trout feed.

Light is another important stress factor. With the culture of the white sucker, for instance, growth and survival were enhanced simply by lowerlag the light intensity. Sudden shocks of light in the laboratory are also harmful, so it is important to have a dimer switch on the lights.

Daily metabolic rate should also be reduced as low as possible. We found that cyclic temperatures can optimize growth rate with a lowering in mean dally temperature. Presumably this is because the daily metabolic rate is reduced. These fish should be protected from all unnecessary activity, and cycling the temperature can help accomplish this while reducing heating costs.

We have some experimental evidence that a natural substrate improves culture of some aquatic anfmals.

Would you suggest some lights around the pond to lengthen the feeding period?

Hokanson: This might increase production, especially with larval perch, because if they go all night without feeding, they are starving to death by morning. After about three weeks I doubt that additional photoperiod would be of my benefit.

Are the zooplankton you spoke of available or an thely be cultured?
Hokaraon: One of the biggest problems in the mass culture of larval fish is getting adequate quantities of the proper feed. If we could find a small enough strain of brine shrimp to grow perch on, it would be a big help in laboratory culture. I believe the only way to culture enough plankton for mass larval culture is in a pond.

Kayes: There isn't so much wrong with pond culture as most of you wight think. It's been practiced for fundreds and hundreds of years in Europe and China and it's really a rather sophisticated type of operation. A pond can be managed as any other type of agriculture with proper nutrients and management.

Hokanoon: I think that where the laboratory is most useful is in controlling the timing and development of the embryo so the egg mass is ready to be stocked when conditions in the pond are most favorable,

It seems to me that the optimum temperature for the fry to start feeding is probably going to be higher thar the actual pond temperature at that time of year.

Hokaroon: That is most likely the case. I think we must try to hold back spaming and egg development until the weather is likely to be better for larval survival. The biggest problem in natural populations of perch is cold periods coinciding with first feeding of the fry.

Is food production the problem asscciated with this temperature limitation?

Hokenson: Our work indicates that the requirement of the larvae is independent of food availability, but food production is also ifmited by temperature. Below $15^{\circ} \mathrm{C}$ there won't be any appreciable feeding activity regardless of food avallability.

What would you say the temperature of the ponds would be at that time?
Hokconson: I would think, generally, between $50^{\circ}-68^{\circ} \mathrm{F}$. The warmer the better.

Kayes: If fingerling production was in conjunction with a growout unit, wara water from the production facility could be used to warm the fry ponds.

Hokconson: You are dealing with a sertes of probabilities in getting eurvival through all the larval stages to a juvenile fish. I think we can account for 90 percent mortality due to the temperature factors alone.

Do you think solar collectors could be used to heat these ponds?
Hokanson: I think it would be more practical to hold back the eggs until the ponds warmed naturally.

Henry: I have an observation to make on flooding the ponds. It seems to work best to fill the pond $7-10$ days before the hatched fry will need food. If the pond is flooded for too long, the crop of zooplankton existing when the fry start to feed won't be as good.

INTENSIVE CULTURE OF YELLOW PERCH (Perca flavescens)

Graden R. West
U.S. Fish and WIldife Service
Lake Mills National Fish Hatchery
Lake Mills, Wisconsin 53551

Abstract

Yellow perch (Perca flavescens) averaging 13.6 gram and 108 min for males and 38.6 gm and 157.5 m for females were held in a metal stock tank containing 912 liters ($32.2 \mathrm{cu} . \mathrm{ft}$.) of water for spawning purposes in late April and early May of 1975.

Synthetic spawing mats and a small section of wire fencing were placed in the tank. The mats were removed later during spawning as they only caused entanglement of the egg envelopes, making it difficult to remove them for incubation.

Three females were sacrificed for egg enumeration with 113.4 eggs per gram found to be the average. This amounted to an average of 4,377 eggs for each of 46 spawns collected naturally from the remaining 47 females. They vere incubated in troughs on trout hatching trays and in a Heath treubator.

At or near hatching eggs and fry were placed on floating screened trays in a 0.2 hectare (0.5 A) pond for hatching and rearing. From an estimated 102,860 fertile eggs and fry stocked in this pond, 35,880 fingerlings were harvested for a return of 35 percent. Part of these fingerlinge were held and fed dry feed. They grew from .38 gram each to 1.36 gram with a survival of 38 percent to distribution.

Otservations on characteristics of culture and life history are included.

Introduction

Fellow perch are raised by this station for use by various agenciea. Host fish go to the Fish Control Laboratory at La Crosse, Wisconsin for toxicological investigations.

Each apring a 0.4 ha pond is allacated for perch spawing and is generally tied up for most of the production season with that species. If perch could be raised by intensive culture methods, a pond would be free for forage or game fish production.

We fell into this procedure by chance in the spring of 1973 when small perch averaging 20 gm apiece spawned in a holding tank. 5 These eggs were incubated to near hatching when some were stocked in our regular spawning pond and others were sent to the La Crosse laboratory.

To gather more information and attempt a repeat performance the process was undertaken again in the spring of 1975.

Methods and Procedures

one-hundred fifty adult yellow perch were acquired by angling through the ice from lock Lake, which is the hatchery's source of pond water. They vere held In an indoor concrete tank for approximately two months before being stocked into a metal stock tank February 26 . The only food offered them was no. 4 trout granules (1.68-2.83mm) and this was terminated April 6.

The fish were very skittish and feeding was not observed although it ay have occurred. The tank was partlally covered with black plastic to shield them frow human activity. This was removed after a few weeks and prior to spawning in hopes they would adjust to people working in their vicinity. Tank dimensions were $.89 \times 2.29 \mathrm{~m}$ and was held to .46 m vater depth giving 912 liters of space. Inflow was from Rock Lake at 12.5 liters per minute.

On March 6 the fish were sorted by sex, weighed, weasured and given a prophylactic 3 percent salt dip. Fifty of the smallest females less than 140 ma were removed April 4 leaving 50 males and 50 females. The tank was partially drained and cleaned several times through the period the fish were held, including the spawning period.

A fev mortalities were experienced with heavily fungused fish, generally feasles after spawning. No treatments were conducted on brood fish except the previousiy mentioned salt dip. The fish were probably weakened from the extended period without food. I'm assuming no granules were eaten. Two black synthetic mats with a total area of 1.5 sq . meters were placed on the tank bottom on Aprif 4 as a spawning substrate. A small section of fencing with mesh of approximately 150 um was placed in the tank, more or less in a roll, to provide midwater attachment for egg envelopes. Perch utilize such structures in our outside ponds. We place fenciag and branches around the pond edge. Eggs are often draped on and laced through such structures.

Upon diacovery of egg envelopes, they were transferted to either trays In trout hatching troughs or to heath incubator. City vater was used with a flow of 4.5-9.5 liters per minute through the heath and 6.1 liters per minute through the troughs. Constant flow formalin treatments at 166-200 ppm for one hour were occabionally used to combat fungus infections. Partway through the spawning period the mats were removed from the tank.

Temperatures were taken each day near noon. This was assumed to be an average between the cool early morning temperatures and the high temperature in the midafternoon.

Water from Rock Lake was introduced into the 0.2 hectare rearing pond, D_{1}, on April 10. Unfortunately, due to a pipeline breakage, the pond was only partially filled at that time to an average depth of around 0.3 meters. It remained at this level for several weeks until the line was repaired.

When hatching began on the oldest eggs, they were transferred to D_{1} on anchored, floating screens with a mesh size large enough to allow newly
hatched fry to settle through. Fry are about 6 in length. For a week thereafter the remaining eggs were stocked similarly as they began to hatch. Three females were sacrificed to determine ovary egg counts. The smallest female was excluded from determining the average, since she was below the minimum size of females after the 50 smallest were removed. The ovaries were weighed and the eggs, in a fraction of that weight, were counted. That number was expanded to estimate total eggs per ovary.

The number of apawn stocked was used to estimate stocking rate of pond D_{1}.

An estimated 230 kilograms of hay were added to the pond. This was the only fertilizer that the pond received.

Prior to harvesting, the pond paths vere cleared in the extensive rooted vegetation to facilitate fry removal.

Results and Discussion

Two egg envelopes were collected from the spavilag tank on April 19 at a temperature of $3.6^{\circ} \mathrm{C}$. Four days later at $6.7^{\circ} \mathrm{C}$ spawning again took place and continued each day with two exceptions through May 5 (aee Table 1).

Table 1 - Water Temperature on Spawn Collecting Dates for Yellow Perch

Date	Ave. temp. deg. C	number spami collected	Remarks
Apt. 19	3.6	2	
23	6.7	1	
24	6.1	2	
25	6.1	2	
26	7.2		
27	7.5	3	
28	6.7	2	
29	7.2	5	
30	7.8	3	
May 1	7.8	5	
2	10.0	12 - - - Includes	3 later in
3	10.3	6	day
4	10.6		
5	10.9	3	

Spawaing rarely took place in midday as only three of 46 spawns were collected anytime other than first thing in the morning. This may or may not be normal, since human activity undoubtedly disturbed the fish furing the day.

The largest number of spawns was collected on May 2 when the midday temperature was $10.0^{\circ} \mathrm{C}$ and had risen from $7.8^{\circ} \mathrm{C}$ the day before. This agrees closely with spawning temperatures for wild perch in Wisconsin of 7.2-11.1 C^{+}.

The mats placed for spawning substrate were removed on April 24. The envelopes became entangled in them, making removal difficult. Their abseace appeared not to inhibit spawning. Wire fencing is not necessary since most egg masses were collected from the bottom, although some may have slipped from the fencing due to agitation from adult swiming action. No midwater spawing structures were used in our outgide ponds until 1973 and in previous tank spawning of yellow perch here mats were used but no fencing5.

Egg Incubation

Occasional constant flow one-hour treatments of formalin at $166-250 \mathrm{ppn}$ were not adequate in controlling fungus. in the eggs. Treatment should be dally.

Approxinately half of the eggs were incubated in troughs and the remainder in a heath shelf incubator. The heath is more desirable to keep berter records of spawn and also the eggs are totally contained and cannot float away as on trays in a trough. It is very easy to run ouc of incubation space with troughs or the heath. We had a conflict with trout incubation needs. We had swall females with subsequent small spawn (maximum length around 27 cm). If large adults were used, one spawn may totally fill up a heath tray, as wild spawns may reach 213 cm in length ${ }^{1}$. Trout egg trays would also be inadequate. Our trays have a screened area of $24 \times 46 \mathrm{~cm}$. Eggs often float off the tray.

Our 46 gpawn were contained in one trough about four meters in length containing around 800 liters of water and in seven shelves of the heath, each with 6.8 ifters of water. Total incubation space was around 850 Ifers with the heath the most efficient using only 50 11ters.

If large quantities of eggs were to be incubated, several heaths would be required. Undoubtedly other facilities could be utilized. It is best to have the eggs confined to keep them from drifting or floating off. I belleve a jar system such as is used for pike, walleye and suckers might be tried. Eggs could be removed just prior to hatching for stocking finto rearing ponds. Eggs could be left in the jars until hatching, and a collection trough or tubes could carry the fry into a common tank, as has been done with walleye ${ }^{2}$. This should work well, alace newly hatched fry are pelagic3. They are also photo-positive, as noted while stocking fry into D_{1}. A fernal pail was used with a centrally located hole in the lid. On two occasions fry were noted to move to this light source. A light placed on the collection tank containing swim-out fry should congregate them for collection if need be.

A possible drawback to jar culture was noted by University of Wisconsin personnel. During the final stage of incubation, the tendency to float may cause the envelopes to rise and block the outflow.

Due to this tendency to float, an old method of trout egg incubation might be suitable. I have not seen the system but it consisted of a deep trough with a series of vertical baffles that alternately shunt the flow up then down through horizontal egg trays (see Figure 1). A drawback to this system would be relative inaccessiblity to individual trays as they are stacked vertically on one another. They

Diagramatic Trout Egg Incubation System with Possible Use for Yellow Perch Egg Incubation

Figure 1.
would have to fit tightly so envelopes would not be drawn out the sides of the crays.

Table 2 indicated the temperature units (t.u.) required till eye up and hatching for yellow perch eggs of 1975. Daily cumulative centigrade t.u. are given while only a total is given for Fahrenheit t. units.

A temperature unit has been defined in many ways depending on various usea. In this situation it refers to one degree above $0^{\circ} \mathrm{C}$ for 24 hours and also one degree Fahrenheit above $32^{\circ} \mathrm{F}$ for 24 hours ${ }^{4}$. Bruwn trout egge have required from $670-770 \mathrm{t}$.u. at $47-50^{\circ} \mathrm{F}^{4}$. Our yellow perch eggs of 1973 required $309 \mathrm{t} . \mathrm{u} . \mathrm{F}^{5}$, and averaged $365 \mathrm{t} . \mathrm{u}$. F for 1975. Centigrade t.u. vere 172 and 203 respectively for those years.

As the tetaperature increased fewer units were required for hatching. Our first spawn required $228 \mathrm{t}, \mathrm{u}$, C over an average temperature of 9.9 C. The last spawns experienced 159 t.u. C over an average temperature of 11.3 C . The 1973 average temperature was 11.5 C and 172 units were required.

Hatching dates were decided upon noting several fry that had hatched. A condition such as 50 percent hatch would be more correct, but from a standpoint of return it was felt too many fry would be unrecovered if delayed to a later stage. Hatching could take place on floating acreens on the pond anyway.

Date of eye up was difficult to set. Melanin pigmentation in the eye was visible for several dayo and the date was set when this was easily seen without need for close observation. Eye up dates for four different aged eggs are also noted in Table 2.

There appear to be several condftions closely preceding hatching:

1) Egg envelopes become flaccid with loss of rigidity.
2) Gold iris pigmentation visible surrounding the welanin in the eyes. Best inftially seen with aid of a flashlight.
3) Larval movement decreases,
4) Bubbles accumulate in the envelope, giving the mass a tendency to float.

Table 3 indicates chronology of development for some of the spawns, along with early developmental stages not mentioned above.

Larval movement and iris pigmentation can be noted sooner with a dissecting scope. Other stages would be more definitive with scope use, but tine demanded only occasional visual checks with the naked eye. observations on development were late on some spawns and totally missing on others.

Loss of vigor (LLM) appears to be a blockage to hatching, since vigorous movement is needed at this stage to break free of the shell. This may be a natural method to check populations. This phenomenon was also noted by U. of Wisconsin personnel ${ }^{6}$.

Table - limperature Units to fye Up and Hatching for Yellow Perrf lags

	Tomperatate Cunt/rath	$\begin{aligned} & \mathrm{T}_{\mathrm{m}} \mathrm{~m}\|\cdot\| \\ & \text { Unit } \end{aligned}$	bate o	11 spaw up an	ding hateh	d cumu (Cent	$\begin{aligned} & \text { lative } \\ & \text { grade) } \end{aligned}$
Date			19	23	$\underline{24}$	25	27
Apr. 19	8.8/4/.8	15.8					
20	8.7/47.7	15.7	H. 7				
21	8. $1 / 47.1$	15.7	17.4				
22	$8.9 / 46.0$	16.0	26.3				
23	$9.2 / 48.6$	16.6	35.5				
24.	9.4/4B.4	1.6 .9	44.9	9.4			
25.	$9.4 / 48.9$	16.9	54.3	18.8	9.4		
26	9.5/49.1	17.1	63.8	28.3	18.9	9.5	
27	$9.4 / 48.9$	16.9	73.2	37.7	28.3	18.9	
28	9.4/4B.9	16.9	82.6	47.1	37.7	28.3	9.4
29	9.2/48.6	16.6	91.8	56.3	46.9	37.5	18.6
30	9.5/49.1	17.1	101.3	65.8	56.4	47.0	28.1
May 1	$9.7 / 49.5$	1.7 .5	111.0.	75.5	66.1	56.7	37.8
2	10.0/50.0	18.0	121.0	85.5	76.1	66.7	47.8
3	10.4/50.7	18.7	131.4	95.9	86.5	77.1	58.2
4	10.6/51.1	19.1	142.0	106.5	97.1	87.7	68.8
5	10.6/51.1	19.1	152.6	117.1	107.7	98.3	79.4
6	10.6/51.1	19.1	163.2	127.7	118.3	108.9	90.0
7	10.4/50.7	18.7	173.6	138.1	128.7	119.3	100.4
8	10.5/50.9	18.9	184.1	148.6	139.2	129.8	110.9
9	10.6/51.1	19.1	194.7	159.2	149.8	140.4	121.5
10	11.1/52.0	20.0	205.8	170.3	160.9	151.5	132.6
11	11.3/52.3	20.3	217.1	181.6	172.2	162.8	143.9
12	11.3/52.3	20.3	228.4	192.9	183.5	174.1	155.2
13	11.3/52.3	20.3	(411.2)	204.2	194.8	185.4	166.5
14	11.3/52.3	20.3		215.5	206.1	196.7	177.8
15	11.5/52.7	20.7		(387.8)	(370.9)	208.2	189.3
16	11.7/53.1	21.1				374.7	201.0
17	12.2/54.0	22.0					213.2
18	12,2/54.0	22.0					(383.8)
191	12.6/54.7	22.7					

Table 2 (continued) - Temperature Units to Eye Up and Hatching for Yellow Perch Eggs

Date	28	$\underline{29}$	$\underline{30}$	$\underline{1}$	$\underline{2}$	3	5 Remarks
$\begin{array}{r} \text { Apr. } 19 \\ 20 \end{array}$							
21							
22							
23							
24							
25							
26							
27							
28							
29	9.2						
30	18.7	9.5					
May 1	28.4		9.7				
2	38.4	29.2	19.7	9.7			
3	48.8	39.6	30.1	20.1	10.4	- -	--4/19 eggs
4	59.4	50.2	40.7	30.7	21.0	10.6	well eyed
5	70.0	60.8	51.3	41.3	31.6	21.2	
6	80.6	71.4	61.9	51.9	42.2	31.8	10.6-4/23 eggs
7	91.0	81.8	72.3	62.3	52.6	42.2	21.0 well eyed
8	101.5	92.3	82.8	72.8	63.1	52.7	31.5
9	112.1	102.9	93.4	83.4	73.7	63.3	42.1
10	123.2	114.0	104.5	94.5	84.8	74.4	53.2-4/27 eggs
11	134.5	125.3	115.8	105.8	96.1	85.7	64.5 well eyed
12	145.8	136.6	127.1	117.1	107.4	97.0	75.8
13	157.1	147.9	138.4	128.4	118.7	108.3	87.1
14	168.4	159.2	149.7	139.7	130.0	119.6	98.4-5/3 eggs
15	179.9	170.7	161.2	151.2	141.5	131.1	109.9 well eyed
16	191.6	182.4	172.9	162.9	153.2	142.8	121.6
17	203.8	194.6	185.1	175.1	165.4	155.0	133.8
18	366.9)	206.8	197.3	187.3	177.6	167.2	146.0
19		219.4	209.9	199.9	190.2	179.8	158.6
		(395.0)	(377.9)	(360.4)	(342.4)	(323.7)	$(285,5)$

Numbers in parenthesis at the bottom of each colum indicate cumulative temp. units Fahrenheit to hatching for that group of eggs. Daily entries are cumulative temp. units Centigrade. Temperature Centigrade is also the temp. units Centigrade for that day.

Thble 3-Developmental Stiges of Yelluw Perch Figs.

Date spatwod un

The method of stocking eggs in our pond could possibly aid iry over this critical period. Wave action lapping against and over the floating screens would agitate the eggs helping the fry break loose from the shell. Handling frees many of the fry. To minimize loss of fry into trough or incubator, it may be better to stock eggs just prior to any hatching, possibly during the inactive embryo stage.

Egg Enumeration

Table 4 gives information on egg enumeration. The smallest female was not used in averaging the number of eggs per spawn, since she was well below the minimum ofze of adults uned in spawning. There appears to be no direct relation between length and number of eggs.

Table 4 - Egg Counts of Three Yellow Perch

Length	wt. gix	ovary Wt.-gm	no. $\operatorname{egg} g^{*}$	$\begin{gathered} \text { eggs per } \\ \text { inch } \\ \hline \end{gathered}$	$\begin{gathered} \text { eggs per } \\ \text { min } \end{gathered}$	$\begin{gathered} \text { eggs per } \\ \text { 1b. } \\ \hline \end{gathered}$	$\begin{gathered} \text { eggs per } \\ \text { gm } \end{gathered}$
107	23	3.15	2031	484	19.0	40,620	88.3**
152	45	10.7	5208	868	34.3	52,080	114.8
170	80	18.0	9150	1366	53.8	50,833	112.0
* Estfmate as percent of ovary wt. counted and then expanded.					Total - 102,913		$\begin{aligned} & 226.8 \\ & 113.4 \end{aligned}$

**Not included in averages as below minimum size of adult females used.

The average number of eggs per gram was 113.4. Our brood stock females averaged 38.6 gm each (see Table 5) which gives an average spawn of 4377 eggs.

Table 5 - Yellow Perch Brood Stock Information

	Number	mininum length-im	maximum length-mm	average length-mm	total wt. gul	average wt. gm
Males	50	97.8	165.1	108.0	681	13.6
Females	50.	139.7	190.5	157.5	1930	38.6

Egg fertility was checked on April 28 using a few eggs from spawns of $4 / 19$ and $4 / 23$ (see Table 6). Fertility should have been checked periodically as spawning progressed. Upon stocking the remaining hatching eggs on $5 / 19$, approximately 50 percent were judged dead. This was a very rough visual estimate.

Table 6 - Yellow Perch Egg Fertility

Date spawned	number	number fertile	percent fertile
$4 / 19$	11	10	91
$4 / 23$	43	41	95
Total	54	51	94

The number of eggs stocked in D_{1} was estimated by the number of spawns stocked. The tumber of spawns stocked was less than collected since seven were removed that contained total or nearly total dead egge.

The following figures show how the stocking rate was estimated:
Eleven spawns stocked from eggs depusited through April 28 at 4,377 eggs per spawn:

$$
11(4377)=48,147 \mathrm{eggs}
$$

Twenty-eight spawns stofked from eggs deposited after April 28 were judged to be 50 percent dead, giving only 14 viable spawns at 4,377 eggs per spawn:

$$
\begin{array}{r}
14(4377)= \\
\text { Add previous stocked eggs } \\
\text { Total } 1,278 \text { eggs } \\
\frac{48,147}{109,425} \mathrm{eggs}
\end{array}
$$

Applying the fertility level of 94 percent:
$.94(109,425)=102,860$ viable eggs stocked.
Because of the observed Low quality of eggs stocked on May 19 it is very possible that percent fertility was down somewhat from earlier eggs. A decrease in quality was also noted by U. of Wisconsin personnel. ${ }^{6}$. Often dead eggs were noted inside the folds of the egg envelopes. The envelope is a tube resembling an elongated, thin pickle with transverse accordion-like folds. The eggs inside the folds were dying, probably because of either poor water circulation during incubation to that area, or because initially this area was poorly fertilized. This area should be checked in the future. If the area is fertile, increasing water flow may prevent further recurrence. A one-toone sex ratio was present during spawning. Two males to each female may be a better ratio. In this instance, two tanks should be used to lessen crowding, which increases battering of the envelopes prior to collection.

A volumetric method of determining envelope size and subsequent number of eggs would be desirable to keep a running total of collected eggs. Physical measurement of envelope dimensions was too inconsistent due to accordion effect.

The elongate mesh screens used on trout hatching trays fitted to a flotation device with high sides would be ideal for hatching. Wave action may wash out the egg masses if. the wall is not high enough. I believe eggs should be exposed to wave action in some form to aid in hatching possibly a screened cover with low sides. No predation by birds was noted of eggs exposed at the pond surface. This may never be a possibility, but a screened lid would eliminate the problem. We occasionally have problems with grackles robbing fingerlings from our traps, but perch fry do not constitute much of a meal, compared to fingerling bass or walleye.

The pond to be stocked should be filled when the first egss are produced and fertilized as soun as possible. Stocking was about three weeks after first spawn collection. This will vary with either slowly or rapidly warming water temperatures. Herbicide appllcation should
be considered as a preflood or postflood application, depending on the type.

Presently our station uses alfalfa pellets and hay for a general fertilizer. The break in our water supply line kept us from filling our pond until several weeks after fry were stocked. We were therefore late with fertilizer. About 230 kg of hay was placed in the pond from June 6-20. Nothing else was added prior toharvesting the pond July 11.

Fry were first sighted in the pond May 25 at approximately $16 n m$ length. They were observed on June 6 at about 25 mm , and there appeared to be very little zooplankton available. Sightings on June 18 showed them to be around 35 mom. Assuming a mean stocking date of May 15 and initial length of 6 mo the fry grew 29 min in 34 days to the sighting of June 16 which averages 0.85 mer day. Unfortunately these figures are based only on sightings, not actual measurements, and are probably worth little more than the paragraph used to mention them. Growth in the Red Lakes of Minnesota averaged 0.722 mm per day over a $51-\mathrm{day}$ period for several years ${ }^{3}$.

Harvest

Paths were cleared in the vegetation to facilitate fingerling removal. Extensive growth of what appeared to be Najas sp., Potamogeton sp., Elodea sp. and Chara s^{7} were present due to lack of herbicide application. The pond being shallow for the first few weeks no doubt alded vegetative growth.

The pond was harvested duly 11 yielding 29.916 . at 1200 fish to the pound for 35,880 fingerlings (12.6 kg at .38 gmeach). This was a return of 35 percent from an estimated $102 ; 860$ viable eggs and fry stocked. Fingerlings appeared weak although no criteria were used except general body morphology and how stressed the fish became from hand 1 ing.

The Fish Control Jaboratory at La Crosse, Wisconsin received 15,000 of these fingerlings and 160 were sent to the Environmental Protection Agency facility at Monticello, Minnesota. The remaining 20,700 were held in l1.1 C well water in the holding house. We expected to encounter systemic bacterial infection, and holding in cool water slows its progress. We have had problems with this chronic infection in the past with several species, perch being one of them.

Feeding Fingerlings

Feeding was started using our production trout feed of number one granule size (595-841 microns). Some feeding noted after one to two days. It seems best to drop a few particles into small areas inftially rather than general broadcasting over the tank surface. This attracts attention to that specific area and when feeding does begin, it may help in teaching others. This applies to training largemouth bass fingerlings and seemed to apply to perch. Bass prefer live, moving food and when a pellet or granule splashes to the surface they rush to inspect it. It doesn ${ }^{*}$ t move, other than sinking, so several fish will eye it as it falls to the bottom. With bass, using recently thawed Oregon Moist Pellets which are rolled into small "worms," a gyrating action is often established as the "worm" sinks. This entices fish to sample the object, which leads to eventual acceptance of regular dry production granules.

Time was not available to do the best fob of feeding. It requires small amounts at closely spaced reyular feedings. Automatic feeders may do the job but 1 feel a certain personal touch is required. Observation of the fish is helpfuz.

A switch was made to number two granules (841 microns - 1.19 mm) after a few days when a preference was noted for the larger size. The fish were feeding we 11 by the 23 rd (after 12 days) and on July 25 they were transferred to a four-foot diameter (1.2 meter) circular tank in the office building on city water at approximately $16^{\circ} \mathrm{C}$, where the temperature stayed into September.

The fish probably would have gone on feed sooner at warmer water temperatures, but we were reluctant to do this in view of possible bacterial complications. If the fish had been harvested in good condition, they may have been able to hold in warmer water.

Chronic mortality was experienced through the holding period. Most of the mortality appeared to involve emaciated fish which never went on feed. Of the initial 20,700 fingerlings, 930 were distributed September 3 and the remalning 6,970 were distributed September 9 . This amounts to 7,900 fish for a 38 percent survival for the two-month feeding period. Total weight distributed was $23.61 \mathrm{~b} .(10.7 \mathrm{~kg}$) and the average sfze was 334.7 to the pound (1.36 gm each). They entered this period at . 38 gm each.

Recommendations

Desirable actions that should be achieved in the future inciude:

1) Adults should be acclimated to tank culture. Domesticated brood stock fn other words and therefore pellet raised fish.
2) Forage should be provided adults if held for substantial periods prior to spawning and for post spawning if they are not aeceptling dry feed.
3) Periodically sort out spawned out females to lessen crowding in the tanks or ise additional tanks with 75 or less per tank.
4) Try two to one male/female sex ratio to lessen chance of infertile eggs.
5) The rearing pond should be well fertilized and herbicide should be considered to alleviate the vegetation problem.
6) Assuning fish are harvested in good condition they should be held in warmer water to facilitate transition to dry feed.
7) Feeding fingerlings should be set aside for future brood stock. This means holding space, preferably tanks.
8) Artificial spawning of adults should be attempted.

Yellow perch were raised intensively by tank spawning, egg íncubation and pond rearing of fry. A return of 35 percent was experienced from fry to fingerling. This may not be very accurate. It would be either side of this figure since it is based on a high fertility rate of 94 percent fron early eggs and a rough estimate of 50 percent dead on later utocked eggs. Fingerings were trained to accept dry feed and grew from . 38 to 1.36 gram with a survival of 38 percent to distribution.

Acknowledgements
Thanks go to Kenneth Wolff, fish hatcherywan, for weighing, sorting and meanuring the brood stock and to Jeannine Martin for typing the final copy. Thanks also to Robert Balding for providing the adults from his apare time activities.

References

1. Herman, E., Wisby, W., Wiegert, I, and Milton Burdick. 1964. "The yellow perch. Its life history, ecology and management." Wiaconsin DNR Publication no. 228.
2. Minnebota DNR. 1966. Personal observations at the Glenwood, Minnesota State Fish Hatchery.
3. Ney, John J. and Lloyd L. Smith, Jr. 1975. "First year growth of yellow perch (Perca flavescens) In the Red Lakes, Minnesota." American Fisheries Society, Volume 104, no. 4, Oct. 1975, pp. 718-725.
4. Fisheries Remearch Bulletin no. 27. "The nutrition of trout." Cortland. 1963. Hatchery Report no. 32, 1963. U.S. Fish and Wildlife Service and New York State Conservation Department.
5. West, Graden R, 1974. "Tank spawning of yellow perch." Typed report, 3p.
6. Kayes, Terry. 1975. Personal commnications and laboratory notes. Aquaculture Laboratory, University of Wisconsin, Madison, Wisconsin.
7. Fassett, Norman C. 1960. A manual of aquatic plants. University of Wisconsin Press. McGraw-Hill Book Company, Inc.

TANK SPAWNING OF YELLOW PERCH
Craden R. West
Lake Mills Nationai Fish Hatchery
Lake Mills, Wisconsin 53551

Abstract

Suall yellow perch (Perca flavescens) averaging 20 grams each (23 to the pound) were held in tanks during the spring of 1973. They had been acquired by hook and line that wintur and were excess after storking the larger ones into a spawning pond.

Synthetic mats were placed in the tank in hopes that gawining might be achieved, but little attention was paid to the fish otherwise. Twentyseven spawns were obtained and incubated on trout batching trays. After eye up and near to hatching,half were sent to the La Crosse fish Control Laboratory and the rest were stocked in the previously mentioned spawning pond. No percent hatch or survival was obtained.

Introduction

Yellow perch are raised by this station for use by various federal agencies, mainly by the Fish Control Lab at La Crosse, Wisconsin. They request fingerlings and eggs for their toxicity tests.

Each spring a pond is allocated for perch spawning and generally is tied up for the rest of the year with that species. Brush and fencing is placed in the ponds for eggs to be draped on in hopes that a middepth incubation might be better than bottom incubation. If needs could be met by intensive culture utilizing tanks and troughs, a pond wrould be free for game or forage fish production.

The spring of 1973 saw us with a few extra perch of questionably mature size but with some obviously gravid fenales. These fish averaged 20 gram each (23 to the pound) and it is doubtful if any exceeded 15 cm (about aix inches) and probably 13 cm would be an average length. The larger fish were stocked in a spawning pond.

Methods and Procedures

A call was put out the winter of $1972-73$ that we needed yellow perch brood stock. With the help of local interested parties, pergonnel from the station assisted in acquiring these fish by hook and line frow Rock Lake, which is the main water source for the station's warmvater program. Approximately 213 perch were acquired by this method. Prior to the spawning season the fish were held in inside concrete tanks on lake water and fed fingerling goldfish (Carassius auratus). They were not fed in the spawning tanks.

On March 19 these fish were sorted and 80 of the larger fish were stocked into a spawning pond along with adults from the winter holding pond that we had on hand from previous seasons. The remaining 13] were placed fn the upper half of a holding housc concrete tank utilizink about 47 cubic feet. Inflow water was Erom Rock Lake at about three
gallons per minute.

No disease was noted in the tank and no prophylactic treatments were given. Two black synthetic mats were placed flat on the tank bottom. Appronimate cotal surface of the mats was 16 sq . ft ., with a total cank bottom area of 25 sq . ft.

When egg envelopes were discovered, they were removed and placed on trays In trout hatching troughs. These troughs were used both in the holding house with lake water and in the office basement later with city water. The treatments of formalin at 200 ppm constant flow for one hour were given in the holding house troughs when an infestation of Hydra sp. developed.

After eye up alleggs were transferred to office building troughs and then recelved city water. There was no difference in temperature between the two water supplies at the time. At advanced eyed stage, while initial hatching was commencing for the older eggs, the eggs were tranaferied to both the La Crosse Fish Control Laboratory for future bloassay work and to our regular spawning pond for hatching.

Results

Egge were noted in the tanks April 17 at a water temperature of $8.3^{\circ} \mathrm{C}$ (47^{6} F). Spawning continued through April when the water temperature was $12.2^{\circ} \mathrm{C}\left(54^{\circ} \mathrm{F}\right)$. Approximately 27 spawns were obtained for incubation. Thirteen went to the la Crosse FCL and 14 to our spawning pond. See Table 1 for data on the first eggs spawned.

Table 1 - Temperature Units Required to Hatching for Yeilow Perch Fsgs.
Ave. Ave. Cumulative Temp. units

Date	temp. F	temp. c	Deg. F	Deg. C	Remarks
4/17/73	47	8.3	15	8.3	
4/18	53	11.7	36	20.0	
4/19	53	11.7	57	31.7	
4/20	53	11.7	78	43.4	
4/21	53	11.7	99	55.1	
4/22	53	11.7	120	66.8	
4/23	53	11.7	141	78.5	Embryos well devel-
4/24	53	11.7	162	90.2	oped
4/25	53	11.7	183	101.9	
4/26	53	11.7	204	113.6	
4/27	53	11.7	225	125.3	
4/28	53	11.7	246	137.0	
4/29	53	11.7	267	148.7	
4/30	53	11.7	288	160.4	
5/1	53	11.7	309	172.1	Hatching commencing

A temperature unit has been defined in many ways, depending on various uses. In this eituation I have chosen its definition as one degree above 32° for 24 hours on the Fahrenheit scale. I have also used this for the Centigrade scale with 1° above 0° for 24 hours.

For comparison brown trout eggs have required approximately 700 T.U. on the F . scale to hatthing and these yellow perch eggs took around 309 T. Units.

Yellow perch can be spawned with an intensive system. Tbe unknown factor at this station, il carried farther, would be training the fry to accept an attificial diet. Fingerling pereh of approximately 200 to 400 per 1 b . ($1-2 \mathrm{gram}$ each) have been held and fed tor several weeks here in tanks on a dry diet.

Recommendacions

A similar trial will be attempted in the spring of 1974 if time and space permit. Smaller metal rearing tanks will be used as trout will occupy avallable concrete tanks. Procedures will not vary much from 1973 except that more attention will be paid to the trial. Regular production activities generally dominate and little fime is available for projects such as this. The following additional information should be cowiled for the next trial.

1) Size of the test fish.
2) Sex ratios.
3) Egg enumeration.
4) Percent hatch.
5) Percent survival.

There should be an attempt at culturing any fry produced. Possibly brine shrimp could be acquired for food untill fry are large enough to switch to a dry diet. This should be done in replicate with a regular trout starter diet for other fry.

Summary

The initial phase of an intensive culture method for yellow perch was accomplished. The fish spawned successfully in holding tanks on synthetic wats. The eggs were incubated in standard troughs on trout hatchiag trays and began hatching after two weeks. When the oldest eggs were initially hatching, one half vere sent to the La Crosge FCL and the remainder were transferred to a spawning/rearing pond for hatching.

Literature Cited

Fisheries Research Bulletin no. 27. The Nutitition of Trout. Cortland Hatchery Report no. 32.

Sherman Stairs
Hatchery Manager, Lake Mills National Fish Hatchery Lake Mills, Wisconsin

The Lake Mills National Fish Hatchery is one of about 90 federal fish hatcheries in the United States. We all have our special responsibilities and one of ours is raising perch that are used by other government agencles, particularly the Fish Control Laboratory at La Crosse. Our facility is 88 acres and is comprised of 24 ponds totaling 30 acres and ranging in size from $3 / 10$ to $3-1 / 2$ acres each.

We started raising perch the same way as we raise bass, that is, placing the brood stock in ponds, letting them spawn, then harvesting in June. At this time the fingerlings weighed about two grams, which was the size requested. This worked fine while we only needed 5,000 or 10,000 fingerlings per year, but as our needs increased we found it necessary to intensify our perch fingerling production operation.

We spawn our fish in tanks or ponds and get good fertilization. We found that pieces of brush placed in. the ponds help collect the egg ribbons. When we first started this, we ran out of males while we still had ripe females, so now we have three to four times as many males as females.

One of the first things we did was to enumerate the eggs so we knew how many we were stocking. This information is included in Graden R. West's "Intensive Culture of Yellow Perch," which is fncluded in this proceedings. The first year, we stocked approximately 111,000 eggs, had a 93-94 percent hatch and harvested approximately 35,000-36,000 fingerlings from a $1 / 2-a c r e$ pond.

We found that the best incubator was a Heath Techni-Cabinet. We placed four or five egg ribbons on each tray. The eggs don't float out of the trays and we can examine them without disturbing them.

Just prior to hatching, gas bubbles develop in the egg mass and the whole ribbon begins to rise. By this time, the ribbon is difficult to manage and should be in the pond. We needed to know how long it would take the eggs to hatch so we determined the number of temperature units required for incubation. This work is described in Mr. West's paper. Knowing the temperature units required, we found we could slow down or speed up incubation so the eggs hatched at the time the ponds had developed a good crop of food organisms.

Fingerling production requises a fertile pond. Comerctal fertilizer or hay can be used to fertilize a pond but we ve found that alfalfa meal works the best. It has a high protein content and works faster than hay. With average weather, we get plankton growth in our ponds, suitable for perch production in $10-15$ days. We apply about 800 pounds of alfalfa per acre and sometimes have to add more as the season progresses. If hay is used, it should be chopped and applied at a rate of $1,50016 . /$ acre.

We have found that the bost way to stork the eqgs is in a smallow woon tray with a screen bottom. The eggs are kept off the bottom af the pond and are protered from bird predation becaust the tray will sink when the hird sjts an it. When the eggs intof, the fry can switn out through the streen.

It is fapartant that the fingerlings be harvested from the pond betare vegetation becones a prebleni. jereh can be started on dry feed when they are $3 / 4$ to one inoh long. In our ponds, they rubh this size by about the first of fily. If we wait until the middle of July to drain our ponds, submerged vegetation makes harvest of the fingerlings very difficult.

We harvest our fish by drawing the water slowly out of the pond and trapping the fish in the kettle. During barvest, it is very important to sttess the fish as little as possible. We have a very serious bacterial problem at laike Mills and this starts tokill our fish if the water gets warmer thin about 60° or it we handle our fish too much.

We have expanded our texthology of perch fingerling production significantly since we stirted. The major achlevements have been incubating the eggs indoors and stocking them in ponds on screened trays so the eggs batch in the pond. I think the next step will come with getting the fish to feed right after they hatch, and the University of Wisconsin Perch Aquaculture lroject is working on this. it will also be very important to take the fish that do best in the aquaculture system and spawn them. It takes a long time to produce a liatchery strain of insh, but it inproves the fish for cultural purposes.

I'd IIke also to mention that once the fish are raised, they must be tcansported. This is an addiliunal stress factor and the best methods of transporting perch fingerlings should be looked into.

What are the pH timits for spaning peroh? I have a aranberry bog with a pH of 4.3

Kayes: Specific pH limits for perch aren't known but the problem with acidic water is that calcium ions aren't present and we know calcium is requifed for fertilization. There is a real doubt as to whether perch could spawn successfully under acidic conditions. It's better to have water that is excessively alkaline than excessively acidic.

Will brood etook eat the fry and fingerting if they are in the same pond?
Itairs: Very definitely. That is why we raise perch the way we do, scocking a clean pond with eyed eggs but spawning the fish elsewhere.

If the brood fish have an altermate fleed like minrows, will they still feed on the young perch?

Kayes: Perch are not very effective piscivores. They have a hard time catching minnows.

Stairs: I think the big problem is with large perch eating the spawns.
Kayes: At any rate, we can conclude that it is poor pond management to have anything in the pond other than perch ringerings.

What are the eoonomice of ueing a high protein fertilizer tike dried atfalfa in place of organic fertilizer?

Stains: I think it is more economical because you get a greater return in pond nutrition per dollar spent. Alfalfa also works very quickly. We finish our pond cycle for perch in four weeks. Using hay for fertilizer, it would probably take four weeks just to get a zooplankton population started. I think everyone would agree that animal manures are very bad because they promote algae and weed growth.

Henry: Also, with animal manure, a great deal is needed and the handilng cost is increased.

Do you drain your ponds and let then freeze out every jear?
Stairs: Yes, we drain as many as we can.

How do you havdle the disease problem in your ponds if you can't drain.
them?
Stairs: We get parasites in the ponds but we don't have problems with disease until the fish have been removed and handled. Parasites can be controlled with chemicals but che new laws being enforced by the food and Drug Administration and Environmental Protection Agency make
hatchery work very difficult. They haven"t registered such chewicals as formaldehyde and copper sulfate which are very important in our fish work.

If it.'s so important to ketp the cgas suspended off the pond bottom, why do perch overpoputiote no lakes on thetr aum?

Stairs: I'd guess that the survival rate of eggs laid would be less than one half of one percent in the wild, Perch overpopulate natural waters through sheer numbers. They are very prolific.

Will perch spawn on samd?
Staire: I think they will spawn anywhere but they prefer gravel.

Do you incubate the eggs until they hatch:
Stains: No, only until they are eyed. Then we transfer them to the wooden trays with screened bottoms. When the eggs hatch, the fry can sefm through the screen and out into the pond.

What do you do to control fimgus in the incubators?
Stains: We use the same procedure as for trout egg incubation. We pour 160-200ppm formaldehyde through the incubator once per day. We only do this until the eggs have eyed because the creatment might kill them after that.

Do you remove dead eggs?
Staire: That'g not practical with perch. It takes too much time.
West: I would like to make a few comments at this point, first on pond flooding dates. In an average year we would flood the pands when the firat eggs are produced. About three weeks after flooding, the fry will need to begin feeding and the zooplankton population should be developed by then. Pond flooding dates should be adjusted according to how warm the spring weather is.

Dr. Hokanson spoke of different stages accompanying the hatch. One af these is when the embryos are heavily pigmented and they become very active. Just before hatching they lose their urge to struggle and become inactive. We believe that this impedes hatching because the fry aren ${ }^{\dagger} t$ fighting hard enough to break loose from the shell. We think that these stages are important in determining when the eggs are stocked. If they are placed in the pond during the active period, wave action might break up the ribbons and give a premature hatch. Because of this, we try to stock our eggs during the inactive period just prior to hatch-ing- If you wait too long, the eggs will hatch as they are removed from the incubator so timing is important.

Kayes: I have talked to a lot of people about perch culture and found that there is a different "best way" of doing it for every facility. For instance, at the Lake Mills hatchery, the eggs are stocked when they are well eyed out. If I waited until that long to stock eggs, I would have a great deal of difficulty. The basic reason for this is that Mr. Stairs works with much smaller fish than we do and the ribbons are much smaller and easier to handie. The fish we work with are from lake Mendota and the ribbons may be five to seven feet long. If I wait until the eggs are well developed, I'1l end up with a megs when I try to move them. We move our eggs on day six or seven after fertilization and Mr . West moves his on day eight or nine. One procedure is not more correct than another, just more appropriate for a specific facility.

Weat: The spawn from six to seven inch fish fit into the Heath trays uuch easier than the ribbons from a larger fish.

Kayes: With the large ribbons there are more problems with flotation and the larvae escaping from the egg masses, but of course, you get more eggs out of larger females.

Do you need a permit from the DNR to dig a pond even if it will be drained avary fall?

Stairs: Definitely. If you raise fish, you have a fish hatchery and you need a fish hatchery license.

Rithard W. Soderberg
Aquicolture Specialist
University of Wisconsin-Extension

Perch fingerling production will necessarily be a pond operation. Ege taking is best done indoors but fry feeding must be in the natural environment of a fertile pond.

Pond production estimates for coolwater fish range from 50 lbs per acre to 250 lbs per acre, which converts roughly to $11,000-60,000$ two-gram fingerlings. The variability of pond production is due to several biological and chemical factors characteristic of each pond environment. It is conceivable that pond production could be raised substantially by supplemental feeding, but for the purposes of this paper it will be assumed that 30,000 fingerlings can be raised per surface acre of water per season. The acreage required to support a 100,000 pound per year production facility would then be about 12 acres, assuming a survival rate of 80 percent from stocking in the production system to harvest.

Fingerling production in ponds requires a high level of management and ponds should be constructed accordingly. A manageable fish pond is one that can be drained and filled easily. Since well water is the most desirable water source for a pond devoted to fingeriing production, the soll used for diking must be of a high clay content to minimize pumping requirements to replace water lost through seepage. Pond size is also factor in management but small ponds cost more per acre to construct than larger ones. No criteria for sizing perch fingerling ponds have been described but they should probably be limited to around two acres, with a width not to exceed 150 feet.

This prospectus for a 12 -acre perch fingerling fartm assumes that the land is level; the soll has a high enough clay content to hold water; and adequate groundwater is available at a reasonable depth. Land costs will be minimized if a swampy, but drainable site is chosen or if the area is in some other way unsuitable for other forms of agriculture. It ls important that the site not be in a floodplain to eliminate costly diversion canals or higher than necessary dikes.

Figure 1 shows a proposed 12-acre perch fingerling farm containing six two-acre ponds, each with a 150-foot width. The central dike allows truck access to each pond. All dikes have a height of five feet to allow a water depth of four feet at the deep end of each pond. The central dike has a ten-foot cuwn requiring 4.63 cubic yards of soil per Ifnear foot and the internal dikes have a three-foot crown requiring 3. 33 yards of soil pur lincear foot. Figure 2 shows the rrossisectional dimensions of the dikes.

Each pond has its own water sontrol structure so it can be individually managed. The most practical drainage system for small ponds has been found to be the Canfield drain or turndown pipe. Figure 3 shows the operation of the turodown driain. The standpipe serves as an overflow to regulate the water level wf the pond when in the upright position. When turned down, the standpipe becomes a drain. Each turndown drain

Figure 1. Layout for proposed 12 acre perch fingerling farm. (Scale: $1 \mathrm{~cm}=50^{\prime}$)

Figure 2. Dinensions of Dikes.
(Scale: $1 \mathrm{~cm}=2.5^{\circ}$)

Figure 3. Drainage Diagraim
(Scale: $1 \mathrm{~cm}=2.5^{\circ}$)
is connected to a central drainage line beneath the central dike, Each pond will require about 96 hours to drain completely if the standpipe is aix inches in diameter. A circular catch basin should be provided at the drafnage end of each pond to facilitate harvest. It should be 1-1/2 feet deep at the center and occupy 10 percent of the pond's area. The catch basin for a two-acre pond would then be 105 feet in diameter.

DISCUSSION

This prospectus presents a reasonable profit projection for a pond fithery operation in Wisconsin. As in other forme of agriculture, the producer is at the mercy of weather conditions and market fluctuations soafeasibility study of this type can be used only as a guide. It is expected that the greatest benefit in an operation on the scale presented here would be in conjunction with a growout facility. The grower would then be producing his own fingerlings at a cost of about four cents each and would have the best opportunity to upgrade his product through genetic control.

COMMENTS ON SEALING POND LEAKS

The best advice on sealing leaky ponds is to avoid digging them on permemble soils. With today's land costs, water regulations and pumping costs, however, it is not always possible to locate the pond operation in an ares with ideal soil characteristics.

Many areas in Wisconsin have clay at a reasonable depth so that it can be mined to line the pond. In any case the pond dikes should have clay cores and antiseepage keys. Comercially available clay sealers such as Benonite sometimes solve pond leakage problems but success has been variable and unpredictable.

Carp or hogs are gometimes used to build up an impervious organic layer on the pond botton and sides but this would take at least a year. A leaky area on a pond dike can be "hogged off" without taking the entire pond out of fish production.

Ten afl plastic sheeting for lining ponds costs about 11 cents per squate foot and should be considered an extreme measure because of the cost.
LAND COST
15 acres a 500
Cost$\$ 7500$
EARTH MONLMG COSTS
Drainage system (backhoe) 185 yards @ . 75 139
Central dike (caterpillar) 2278 yards @ . 50 1139
Internal dikes (caterpillar) 19,021 yards @ . 50 9511
Catch basins (caterpillar) 1936 yards a .50 968
PLUMBING COSTS
Drainage
5896° PVC © 4.76 2804
6 6" PVC "T"' @ 37.50 225
$66^{\prime \prime}$ PVC male adapters © 10.63 64
$6 \quad 6^{\circ}$ PVC female adapters o 15.70 94
6 6" PVC elbows e 26.79 161
6 yards concrete e 35.00 210
Supply
1900* $6^{\prime \prime}$ PVC \& 4.76 9044
$60^{\circ} \quad 3^{\prime \prime}$ PVC @ 1.68 101
4 6" red "T" e 37.50 150
$26^{\prime \prime}$ red elbow e 26.79 54
$1 \quad 6^{11}$ elbow 26.79 27
2 6" gate valves @ 283.20 567
PUMP AND WELL
300 gpa subwersible turbine
pump w/10HP gasoline engine 3035
$100^{\prime} 6^{\prime \prime}$ drilling e 6.00 600
$100^{\prime} 6^{\prime \prime}$ casing a 3.42 342
$56^{\prime \prime}$ couplings a 10.10 51
OTHER COSTS
3 acres vegetative cover A 45.00 135
74 yards gravel to surface central dike @ 13.00 962
1100^{\prime} gieve, $1 / 8^{\prime \prime}, 4^{\prime \prime}$ deep 225
4 dipnete e 14.00 56
6 1/3 HP aerators e 86.00 516
1 lawn mower 125
1-1/2 ton plckup (used) 3000
2 fish hauling tanks e 1200 2400
1 Oxygen kit 30
TOTAL ESTIMATED INVESTMENT 44,235
COST OF PRODUGTION Cost
LSTHTATED EXPENSES
Principal + Interest, 7 years at 9\% 8540
Pumping Costs, 4300 gallons e. 52 2236
Aeration costs, 2 HP for 30 days 58
Labor, 658 man hours @ 3.50 2303
Taxes, Insurance, Repairs, 47 of 44235 1770
Fish hauling, 300 miles a 40 120
TOTAL 15,027
FSTHATED ABNUL PRODUCTION 360,000 @ .05 18,000
ESTDATED BARNING 2973
Profit per land acre 198

CONCEPTS IN FISH TANK DESIGN

Ron Henry
U.S. Fiah o Wildife Services
Fish Control Lab
La Crosse, WI

Several factors ghould be considered in selection, configuration and construction materials of any fish culture unit. Configuration of a given culture unit should be determined by the desired water exchange rate, total water volume, depth, shape, drainage system and harvest method. Two of the factors influencing pond size are physical restrictions and economic restrictions, that is, characteristica of the site and development funds available.

Site characteristics and the amount of water available will help determine whether fish are cultured intensively or extensively. Intensive culture can be compared to a feedlot for cattle. Extensive culture is similar to raising cattle on a range.

The water space potential determines which type of culture can be practiced. For intenaive culture, the water body must be able to be filled in 30 minutes to four hours. The range for extensive culture is one to seven days.

For instance, if a fish farmer practicing extensive pond culture cannot completely fill his ponds in seven days, he has too much pond space. The water space potential is especially important to a pond operator because during the sumar when algae blooms die of f and deplete the water of oxygen, the ponds must be flushed. This has to be done within seven days.

An example of an extensive operation would be a water supply of 12,000 gph. With this volume, the operator could have from three to $20,1 / 10-$ acre ponds. If he built more than 20 such ponds, his space potential limit of seven days would be exceeded.

An example of how $12,000 \mathrm{gph}$ could be used intensively would be with 500 gallon tanks. A $1 / 2$-hour fill time would allow 12 tanks and a four-hour fill time would allow 96 tanks to be operated. If there is excess potential in an intensive culture system due to more water flow than can be managed easily, it can be integrated with an extensive system. One operator I know planned his potential water space and came up with an Integrated system having intensive culture in circular tanks coupled with extensive culture in ponds.

Different construction materials and methods are available for different economic situations. Ac one end of the scale is fish culture in rivers, lakes or the sea. These water bodies cannot be drained so cage culture is practiced. A cage can be any shape, be made from netting or wire and have a lock space and flotation collar around it. The flotation used is of ten Styrofoam or 55-gallon drums.

An exciting application of cage culture is floating raceways. The netting is replaced with vinyl and the raceway is pumped full of water. The edvantage is that the water can be taken from any depth, so the best quality of water is used throughout the year. The upper limits of the water colum, where cage culture is confined, is not always the best viter for fish culture.

Another type of fish culture vessel is a canal or raceway. The simplest type of conatruction is earthen. The sides can be improved with concrete, wood or vinyl. The most expensive type of construction is all concrete. I design my concrete raceways in 10 cubic meter sections to factlitate calcalations when treating the fish for disease.

Thare age two basic types of pond construction. In plt construction, the pond is dug down into the ground and in dike construction the levees are bailt up above the orginal ground level. Dike construction is the more deatrable because it allows drainage. Some ponds have wood or concrete sides, but most are earthen.

Sllos are sometimes used for trout culcure and can be built above or below the gromd. They are usually made of concrete, fiberglass reinforced cement, metal or fiberglass.

Tazk are usually made of poured concrete but there are several disadvantages to this type of construction. If the fish culturist decides that hie facility $1 \operatorname{sn'}^{\prime} t$ designed correctly, he can't move his tanks if they're made of concrete. Also, concrete is porous so the walls can harbor disease organisms. They can be painted but the paint falls off in a short time. Tanks can also be made of fiberglass or metal. The best tank we've used is a double walled fiberglass tank with internal wood refifforcement and foam insulation between the walls. It is functional, movable and easy to keep clean.

The next thing I'd like to discuss is the shape of tanks for extensive fish culture. In a pond operation the lay of the land or shape of the site ght determine what shape the ponds are. Rectangular ponds should be $1 / 10$ acre or larger. Small ponds have a greater amount of shoreline, which 1s the productive area of the pond, than larger ponds but cost more, per acre, to build. The amount of time that fish will remain in the pond helpe determine how deep it should be. A short-term pond need only be deap enough to keep birds frow wading the edge. This is about three feet. If fieh are going to be kept in the pond longer than eight weeks or a0. It should be deeper so that as the fish grow they have enough space. Also, deeper ponds are slower to be choked with weeds than shallow ones. Frow a pond management standpoint, the fish must be out of the pond before weada become a problem.

The next consideration I'd like to address is harvesting. The first fish ponds buile in this country had channels leading toward the drain to funcl the fish down. The next step in the evolution of fish ponds was to lope the entire pond bottom into a kettle or catching basin from where the fish could easily be harvested. A further refinement to this is a concrete kettle with gates so the fish can be more easily confined. The beat ponde have a concrete slip down the center so that when the pond is drained, the fish slide down into the kettle and harvest themselves.

There are several types of drainage mechanisms. The standpipe drain is comon but there are some faults in it. Once the pipe is turned down, you can't always get it back up. The collar can come loose and leak. It's difficult to screen a standpipe becauge it quickly gets clogged with weeds and it's hard to clean because the drain is under water. One simple type of drain is a sluice with dam boards. The number of boards in place determines the water level. Also, this type of drain is easy to bcreen.

In purany, tanks can be rectangular or round. The depth can be $1 / 4$ to 1-1/2 feet for a very short term, $1-1 / 2$ to three feet deep for an intermediate term and deeper for a long term. The pond should drain to a central collection point for the fish. A little planning by designing tanks right and letting them do the work will pay off in dividends.

I would suggest the following publications for anyone interested in getting into fish farming.

Fish Faraing International
Arthur J. Heighway Publication, Ltd., 110 Fleet St.
London, England EC4A 2JL.
Subscription U.S. \$25.00
Second Report to the Fish Farmers
Resource Publication 113
Bureau of Sport Fiaheries and Wildlife
Washington, D.C. June 1973 \$2.10

The Comercial Fish Farmer and Aquaculture News
620 E. Sixth
Little Rock, AR Subscription $\$ 10.00$

Why are got raising perch? It's considered a trash fish in our area.
Sodepberg: It may be a trash fish for sporting purposes but it's the most valuable finfish for food in this area. Fresh perch fillets are now retalling for $\$ 4.69$ per pound.

Stairs: My comment on that is that in years to come there may be no fioh considered trash, We might be utilizing all fish for food. The Food Sclence Department here has shown that all kinds of fish can be made palatable.

Calbert: The reason that we have been primarily interested in perch aquaculture is that there is a demand for this product that is not being eupplied. In most new food industries, a product is developed and then a market is developed. In the case of perch, we already have a market. Admittedly, this is a luxury market. I don't know why people would pay over $\$ 4.00$ a pound for perch when they can get top grade steak for half that price, but they do. In the future, if food suppiles become critical, we aight consider a species of fish less costly to ratse but for now, we're trying to work out perch aquaculture so that it is fairly feasible and somewhat economical. Perch will never be a cheap fish, but we'd like to see it get to the point where a farmer raising it could malke profit.

Noyes: Deaty is in the eye of the beholder. One of the most commonly cultured fish in the worid is carp, but its value 38 a food fish is very low in this country. Carp is not a native fish; it was introduced by your ancestors because, to ther, it was an important food.

Wowld yow say that homonal control of brood stock is a feasible thing to do at this time?

Koyses: The hormonal contrel of opaming is feasible but it takes a certain amont of skill. Whether or not it is a worthwhile technique will depend upon the individual fish culturist. It is very commonly used techuique for other kinds of cultured fish. The endocrine or hormonal control of maturation in perch is not feasible at this time and I don't think it will be in the near future.

On temperature suppression of the adults, is it important to put the males, as well as the females, through a cold period?

Hokanson: The femsle is the most critical, but it would be desirable for the tialug of maturation of both sexes that it be under the same condition.

Kayes: We have people in our project working with sperm preservation. Most of the technology for this has already been developed, so I think that in the foreseable future we will have sperm available when we need It and only the females will have to be controlled.

Hokonaon: I think one of the effects of a cold period on males is that it prolongs the period of time when spermatazoa are avallable, but the female cycle is wich more precise and limiting.

Ia food availability the major constraint on fingerling production in ponds?

Staire: Yes, I would say that food is the major limiting factor, but the amount of food available can be influenced.

Henry: Another thing is rain, A heavy rain can elininate a good crop of food organisms in the pond. Weather is a very important factor at that tiae of year.

Soderberg: A given pond will have a certain carrying capacity, and once this is reached, additional feed and fertilizer won't have an effect. There is a whole host of chemical and biological factors that affect what the carrying capacity of a pond is.

West: It can be harmful to overfertilize or overfeed a pond because the soD rises and there might be a possiblity of oxygen depletion.

Is the aquaculture progrom still interested in the culture of walleye?
Galbert: The walleye program is scill viable. Up until this year we've concentrated on perch because of space 1imitations but now that we have a naw facility we'll be doing more work with walleye.

Hokarson: I would like to make a few comments that I failed to mention in my talk. On holding back brood stock or embryos, it depends upon the water supply. Brood stock could be held back a week or two on spawning In water at a temperature of $4^{\circ} \mathrm{C}$. Well water is not cold enough for this. I wauld also like to bring out the importance of the fattening period in the yellow perch's reproductive cycle. This will be espectally significant for those interected in brood stock production. If anything interferea with the nornal processes that occor within the fattening period, the fish won't sature the next year. It is also important that the brood figh mpan each year. The reabsorption of the gametes will interfere with the development of next year's crop of eggs and no apawning will occur.

Kayes: In conclusion, I would like to make a point on the positive side. We've heard about all the factors that contribute to successful fingerling production: increasing photoperiods, certain temperatures being required, certain conditions necessary in the ponds and so forth. In reality, the normal average temperatures and conditions outdoors are the bat conditions for culture. If this weren't true, perch vouldn't be successful in the lakes. The point is to take advantage of the natural system as much as possible. Learn what the requirements are and find ways of adjusting, manipulating or making slight modifications on the natural system to obtain the maximum yield.
Prbert P. Albrecht
2222 N. Austin
Chicaro, IL 60639
L. Todd Beck
Kraft, Lnc., R\&D
801 Watkegan Rd.
Clenview. II. 60025
Ronald E. Behnke
118 S, Kaln St.
Briliton, WT 541.10
L.C. Berth
L.D. Schreiher Cheese Co., Ine.
P. O. Box 610
Green Bay, WI 53085
Cody Best
Fish Behavior Lab
Matre Dame University
South Bend, IN 46556
Scott R. Bortee
Rt, 3. Box 295
Kaukauna, WI 54130
Jim Cady
Rt. 1
Petergon, MN 55962
Victor Eyancara
University of Wisconsin-Ean Claire
Depertwent of Biology
Eeu Clalre, H1 54701
John F. Dippong
Rt. 2, Box 130
Beaver Dam, WI 53916
Cordon Haase
Mdwest Fish Farm, Inc.
5525 Fieldetone Lane
Madison. WI 53704
Richard Hall
Fox Valley Technical Institute
Appletoa, WI 54911
John Handiton
U.S. Fish δ Wildlife Service
1451 Green Rd.
Anan Arbor, MI 48105

```
Helson Hicks
Rt. 1
Besver Dam, WI 53916
David A. Ibaacs
P.0. Box 100
Seymour, IN 47274
Brad R. Johnson
Et. 2,Gorman Rd.
Rio,WI 53960
Carl Kallansrud
680 S. Taft St.
Lakewood, CO 80228
Fred Karsten
611 E. Walnut St.
Horicon, WI 53032
Brent A. Kepp
Rt. 1, Box }19
Milton,WI 53563
Eugene Klisiak
Bom }15
Sumava Remorta, IN 46379
Carol A. Koffarnus
732 N. Midvale Blvd.
Madison, WI 53705
R. N. Leasum
Osseo, WI 54758
Joseph Lukasiewicz
15779 Selryn
Southgate. MI 48195
Kenneth MacDonald
2531 S. River Rd.
Janesville,WI 53545
Thomas Magnuson
Ogreo, WI 54758
Grant Marcom
111 School St.
Kohler; WI 53044
Bruce D. Morter
$83 Plover Pine Village
Plover, WI 54467
```

J.J. Normington
P.0. Box 456

290 Shore Acres Dr.
Wisconsin Rapids, WI 54494
Jerry G. Potter
561 Waxwing Lane
Madison, WI 53704
Larry Pulsfus
Re. 1
Arlington, WI 53911
Clemens S. Schmidt
2508 Pinta Court
Middeton. WI 53562
Roger A. Schulz
Hebron National Fish Hatchery
RE. 1
Hebron, OH 43025
LeRoy Sillars
R.D. 7, Box 375

Hayward, WI 54843
Nils Stolpe
Trenton State College
Biology Department
P.O. Box 940

Trenton, NJ 08625
Deno A. Trameri
1136 Vilas Ave.
Madisor, WI 53715
Donald E. Wolff
2197 Wolff Rd.
Cambridge, WI 53523

[^0]: a) Denotes best estimate based on culture experience.
 b) Results obtained on excess ration. Restricted rations or mass culture situations will result in a lower growth optimum temperature and upper growth limit which will be dependent on feeding regtme.

